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Abstract—The subgraph matching problem is defined to find
all subgraphs of a data graph that are isomorphic to a given
query graph. Subgraph matching plays a vital role in the fields
of e-commerce, social media and biological science. CliqueJoin
is a distributed subgraph matching algorithm that is designed
to be efficient and scalable. However, CliqueJoin is originally
developed on MapReduce, thus the performance of the algorithm
can be affected by the notorious I/O issue of MapReduce while
processing multi-round join tasks. Meanwhile, CliqueJoin does
not propose a cost evaluation strategy for labelled graphs, which
limits its application in practice where most real-world graphs
are labelled. Targeting the limitations of CliqueJoin, we propose
CliqueJoin++ to improve CliqueJoin in two aspects. Firstly, we
implement CliqueJoin++ on the Timely dataflow system instead
of MapReduce to avoid considerable I/O cost. Secondly, we extend
the cost evaluation function in CliqueJoin to compute optimal join
plans for labelled graphs in the distributed context. Extensive
experiments have been conducted to show that the proposed
method is up to 10 times faster than the MapReduce version
for unlabelled matching, and it achieves good performance and
scalability for labelled matching.

Index Terms—subgraph matching, cost evaluation, distributed
algorithm, dataflow

I. INTRODUCTION

Given a query graph q and a data graph G, subgraph

matching is defined to find all subgraph instances of G that

are isomorphic to q. Subgraph matching is one of the most

fundamental problems in graph analytics, and is widely used

in many domains. For example, it is used to illustrate the

evolution process of social networks [22], to identify terrorist

cells in activity networks [12], and to discover certain features

of biological or chemical networks [8]. Subgraph matching is

also a basic operation of graph databases such as Neo4j [16]

and graph languages such as Gremlin [1].

Existing Solutions. Despite its usefulness, subgraph matching

is computationally intensive because it depends on the NP-

complete operation, subgraph isomorphism [32]. In recent

years, people have devoted a lot of efforts to improving the

efficiency of subgraph matching. The first practical algorithm

for computing subgraph isomorphism problem was proposed

by Ullmann [37]. Subsequent algorithms such as VF2 [13],

QuickSI [33], TurboISO [18] and CFL [6] are developed to

further improve the performance by designing better pruning

rules and/or indexing structures. However, these works are all

sequential algorithms that can hardly handle large-scale graphs

in real life. While finding out the natural binding between sub-

graph matching and relational joins, people turned to develop

both efficient and scalable distributed algorithms for subgraph

matching by processing join operations. StarJoin [35] is the

first algorithm in literature to tackle subgraph matching via

joins in the distributed context. The idea is to decompose

the query graph into a set of stars (star is a tree of depth

1), computing matches of each star and then joining them to

form the final result. This idea, called decomposition-and-join,

inspires a series of following-up works including PSgL [34],

TwinTwigJoin [24] and CliqueJoin [25]. CliqueJoin develops

the state-of-the-art solution using the decomposition-and-join
scheme, which decomposes the query into both stars and

cliques (a complete graph), and then perform the optimal
bushy join. There are some alternative schemes other than

decomposition-and-join. Ammar et al. proposed BigJoin [5]

that solves the join using a variance of worst-case optimal join

algorithm [29]. Afrati et al. proposed MultiwayJoin [4] that

attempts to divide the search space evenly into the configured

workers in the cluster, then each worker can process its own

computation locally.

Motivations and challenges. Although CliqueJoin is optimal

following the decomposition-and-join scheme [25], it has

two limitations. First, it is designed and implemented on

MapReduce, which requires the data to be written to the disk

at the end of certain join round and read back from disk for

the consecutive round. This can cause severe bottleneck while

processing multi-round I/O-intensive tasks such as subgraph

matching. Second, while most of the graphs in real life are la-

belled graphs, CliqueJoin only considers unlabelled matching,

and may not compute optimal join plan for labelled matching

without considering the labels’ statistics.

In this paper, we propose CliqueJoin++ to resolve the issues

of CliqueJoin. To avoid costly I/O operations in MapReduce,

we implement the algorithm on the Timely dataflow system

[28]. Timely is a more general distributed engine than MapRe-

duce. Instead of constraining the data to be written to the

disk at the end of a computing round, Timely allows the user

to program the desired way of maintaining the output data

(internal memory by default). To extend CliqueJoin’s usability

266

2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)

2473-3490/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDEW.2019.000-2



in labelled matching, we refine the cost evaluation function for

CliqueJoin by taking the labels’ frequencies into consideration

in order to compute optimal join plans for labelled graphs.

The implementation of CliqueJoin++ is non-trivial. Firstly,

we target a generic implementation that can solve any query.

Note that the original implementation1 of CliqueJoin is hard-

coded for each query, which largely eases the implementation.

It is challenging to translate the join plan of an ambiguous

query into Timely-executable dataflow. Secondly, we need to

carefully inject labels’ statistics of the data graph into the

cost function on top of the existing CliqueJoin cost estimation

model, which is complicated.

There are some alternatives of optimizing distributed sub-

graph matching.

1) Alternative computing engines. There are alternative

engines such as Spark [39] and Flink [9] to replace

MapReduce. We tend to use Timely here due to (1) it

is more flexible to program; (2) it draws lower system

cost compared to the other popular engines [27].

2) Alternative algorithms. There are at least two al-

ternative algorithms to study, namely BigJoin and

MultiwayJoin. However, they do not draw our attention

due to the following reasons. BigJoin does not invent a

new join scheme, but simply adopts different algorithm

to process the join. We can also implement the join

scheme of CliqueJoin using BigJoin’s join algorithm,

which is also suggested by the authors of BigJoin [5].

Therefore, it is more fundamental to study CliqueJoin.

Although MultiwayJoin does follow a different join

scheme, researchers have already observed that it can

end up with carrying the whole graph in each worker

and thus can scale out poorly [5], [25].

Contributions. In this paper, we propose CliqueJoin++

by extending and improving the state-of-the-art algorithm

CliqueJoin. We make the following contributions.

(1) Fast and scaleable reimplementation of CliqueJoin on
Timely dataflow system. We reimplement CliqueJoin for any

generic query on Timely dataflow system, a high throughput

distributed data engine, to reduce I/O cost as in MapReduce

and increase the efficiency and scalability.

(2) Generalizing CliqueJoin to do labelled subgraph match-
ing. We refine the cost evaluation function for CliqueJoin that

can generate optimal join plans for labelled graphs. As most

of real graphs are labelled, we greatly expand the usability of

CliqueJoin in practice.

(3) In-depth performance studies on large datasets. We

perform in-depth experiments on both unlabelled and labelled

graphs. For unlabelled experiment, we observe that our im-

plementation can speed up CliqueJoin by up to 10 times. For

labelled experiment, the results demonstrate that CliqueJoin++

achieves good performance and scalability, and can process

data graph of billions of edges.

1https://github.com/longbinlai/SubgEnumFramework

Organization. The rest of the paper is organized as follows.

Section II introduces the definition of subgraph matching and

preliminary knowledge. Section III introduces CliqueJoin++

, which extends CliqueJoin to do labelled subgraph match-

ing, and its implementation details on Timely dataflow sys-

tem. Section IV illustrates the experimental results of doing

subgraph matching on both unlabelled and labelled graphs.

Section V shows related works, and section VI concludes the

paper.

II. PRELIMINARIES

A graph g is represented as a five-tuple

g = (V,E,ΣV ,ΣE , L), where V (g) is the vertex set of

g, E(g) ⊆ V (g) × V (g) is the edge set of g, ΣV and ΣE

are the sets of vertex and edge labels, and L is a label

function that maps each node v ∈ V (g) and each edge

e ∈ E(g) to a label. For unlabelled graph, ΣV and ΣE

are ∅. For a node v ∈ V (g), we use id(v) to denote its

index, N (v) to denote its neighbours, d(v) = |N (v)| to

denote its degree, N = |V (g)| and M = |E(g)| to denote

its node and edge size, respectively. We use davg(g) = 2N
M

and dmax(g) = maxv∈V (g) dg(v) to denote g’s average and

maximum degree, respectively. A graph g is a clique if it is

a complete graph. k-clique is a clique consisting of k nodes.

A graph g is a star if it is a tree with depth 1. k-star is a

tree with one root node and k leaf nodes.

Given two graphs g1 and g2, g1 is a subgraph of g2,

denoted as g1 ⊆ g2, iff (1) ∀v ∈ V (g1), v ∈ V (g2) and

Lg1(v) = Lg2(v); (2) ∀(vi, vj) ∈ E(g1), (vi, vj) ∈ E(g2) and

Lg1((vi, vj)) = Lg2((vi, vj)).

Definition 1: (Subgraph Isomorphism) Given a query

graph q and data graph G, q is subgraph isomorphic to

G iff there exists a subgraph g ⊆ G and a bijection

f : V (q) → V (g) such that (1) ∀v ∈ V (q), Lq(v) =
Lg(f(v)); (2) ∀(v1, v2) ∈ E(q), (f(v1), f(v2)) ∈ E(g), and

Lq((v1, v2)) = Lg((f(v1), f(v2))).

Here, we call a bijection f a Match, which can be rep-

resented as a tuple M, consisting of data vertices and each

data vertex uj in M matches the vertex vi in query graph

uj → f(vi). An automorphism is a graph that is isomorphic

to itself.

Problem Statement. Given a query graph q and data graph

G, subgraph matching is to enumerate all subgraphs in G
that are isomorphic to q.

Given a query graph q and data graph G, we denote the

subgraph matching result set as RG(q), or R(q) if the context

is clear.

Example 1: Given an unlabelled query graph q and a data

graph G in Figure 1, we use symmetry breaking technique

[17] to assign a partial order for the query graph which

avoids duplicated enumerations caused by automorphism. In
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this example, the partial order of query graph can be {v2 < v5}
. There are two matches of (v1, v2, v3, v4, v5), which are

(u1, u2, u3, u5, u6) and (u4, u3, u2, u6, u5). We can check the

order constraint for the first match, namely (u1, u2, u3, u5, u6).
As we have order v2 < v5, it constraints that we should have

f(v2) < f(v5), where u2 = f(v2), u6 = f(v5) and u2 < u6

satisfies this constraint. For simplicity, we define that for two

nodes ui, uj ∈ V (G), ui < uj iff id(ui) < id(uj).

Fig. 1: An example of subgraph matching.

Regarding query vertices as attributes and data vertices

as tuples in the relation table, we can naturally express the

subgraph join process as joining relations. In Figure 1, the

edge-by-edge join process can be demonstrated as

R(q) = R(v1, v2) �� R(v2, v3) �� R(v3, v4)

�� R(v4, v5) �� R(v1, v5) �� R(v2, v5).
(1)

CliqueJoin. Generally speaking, the state-of-the-art algorithm

CliqueJoin follows the decomposition-and-join framework to

do subgraph matching. The main idea of CliqueJoin can be

concluded as follows.

(1) SCP Storage Mechanism. Considering the SCP storage

mechanism for data graph G, denoted as Φ(G), we have

Φ(G) = {Gv | v ∈ V (G)}, V (Gv) = {v} ∪ N (v) and

E(Gv) = {(v, v′) | v′ ∈ N (v)} ∪ {(v′, v”) | v′, v” ∈
N (v) ∧ (v′, v”) ∈ E(G) ∧ v < v′ ∧ v < v”}, where

Gv ⊆ G is a connected subgraph of G with v ∈ V (Gv),
and

⋃
u∈V (G) E(Gv) = E(G). Each Gv is called the local

graph of v. Suppose the data graph G is maintained in the

distributed file system in the form of key-value pairs (v;Gv)
for each v ∈ V (G) according to Φ(G), a join unit is a structure

whose matches can be enumerated independently in each local

graph Gv ∈ Φ(G). For CliqueJoin, the join unit can either be

a clique or a star.

(2) Query Decomposition. Given a graph storage Φ(G) and

query graph q, a query decomposition of q is defined as D =
{p0, p1, . . . , pt}, where each pi ∈ D(0 ≤ i ≤ t) is a join
unit w.r.t. Φ(G) and q =

⋃
pi∈D pi. Given the decomposition

D = {p0, p1, . . . , pt} of q, we solve the subgraph enumeration

using t rounds of two-way join:

R(q) =��pi∈D R(pi). (2)

(3) Optimal Join Plan. A join plan determines an order

to solve the above join, which can significantly affect the

performance of the algorithm. The join plan is usually

presented in a binary tree structure, where the leaf nodes are

(the matches of) the join units, the internal nodes are the

partial queries. Given a join plan, we compute the join order

through a post-order traversal over its binary tree. We denote

P as the partial queries set, Pi as the i-th partial query whose

results are produced in the i-th round of the join plan. As a

result, a join plan, denoted as J , can be uniquely represented

as J = (D,P ). CliqueJoin utilizes general bushy tree [21] to

represent its join plan.

Example 2: Figure 2 shows a join plan for an unlabelled

query graph q in the form of a bushy tree. The decomposition

of q is D = {p0, p1, p2, p3}, and partial query set is P =
{P1, P2, P3}, where P3 = q. The first round of join is P1 =
p0 �� p1, second round is P2 = p2 �� p3, and the final round

is P3 = P1 �� P2. In this case, we use triangle (3-clique) as

the join unit.

v1

v2

v3

v1

v3

v4

v1

v2

v3

v4

v1

v4

v5

v6

v1

v4

v5

v1

v5

v6

v1

v2

v3

v4

v5

v6

p0 p1
p2 p3

P1 P2

P3
= q

Fig. 2: An example of optimal bushy join plan.

We denote the set of all possible join plans for query graph

q as S(q). Given a cost function C defined over S , we say a

join plan ε is optimal iff C(ε) is minimized. The details of the

cost function design can be found in [25]. However, it is clear

that C(ε) is positive related to |R(q)|.
(4) Matching Result Estimation. In order to compute the

join plan cost C(ε), CliqueJoin needs to estimate |R(q)| for

a given query graph q. As most of real-life graphs follow

power-law random distribution [11], CliqueJoin estimates

|RGPR
(q)| in data graph GPR generated by power-law model.

Considering q is constructed from a single edge by ex-

tending one edge at a time in steps. Let q(1) and q(2) be

two consecutive queries obtained along the process. More

specifically, for some v ∈ V (q(1)) and v′ ∈ V (q(2)) such

that (v, v′) 
∈ E(q(1)), q(2) is obtained by adding the edge

(v, v′) to q1. Suppose f is a match of q(1), in principal, we

extend f by one more edge to get new matches for q(2). Thus,

if the expectation of new matches that can be extended for one

certain match of q(1) is λ, we have:

|RGPR
(q(2))| = λ|RGPR

(q(1))| (3)

The value of λ depends on the edge which extends q(1) to

q(2). There are two cases may happen, that is, v′ 
∈ V (q(1))
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and v′ ∈ V (q(1)). The details of the two cases for computing λ
and the algorithm of computing |RGPR

(q)| by extending edges

can be found in [25].

Timely Dataflow. Timely dataflow system is a high perfor-

mance distributed system. It abstracts the computation model

as a dataflow graph. The node in the dataflow graph is

responsible for doing computations and the edge is to send data

streams to nodes. One node can receive several input streams

and produce one output stream. When the dataflow graph for

the given computation task is constructed, it will distribute data

to each worker in the cluster, and each worker can finish its

computation locally. The whole computation task is finished

when there is no output stream produced by workers.

III. OPTIMIZATIONS

CliqueJoin is proposed for unlabelled graphs and im-

plemented on MapReduce. In this section, we introduce

CliqueJoin++ , our revision of CliqueJoin to extend the al-

gorithm to labelled graphs and dataflow model.

A. Cost Analysis for Labelled Matching

We can use the label information in the graph to refine the

result size estimation strategy in CliqueJoin++ . Intuitively,

we should process query graphs with rare labels as fast as

possible to reduce the cost.

We use PrG(ι) to denote the probability of the label ι that

appears in a certain node of data graph G. Then, (3) can be

refined as:

|RG(q
(2))| = ηλ|RG(q

(1))| (4)

Similarly, the value of η is considered in two cases:

• (Case 1) If v′ 
∈ V (q(1)), a new vertex is introduced in

q(2) as well as a new edge. In this case, we have:

η = PrG(L(v
′))× PrG(L((v, v

′))) (5)

• (Case 2) If v′ ∈ V (q(1)), an edge is added between two

existing vertices in q(1). In this case, we have:

η = PrG(L((v, v
′))) (6)

In addition, PrG(ι) can be calculated using the maximum

likelihood estimation via sampling or scanning the data graph

G.

B. Migration from MapReduce to Dataflow

Implementation Details. The SCP storage mechanism and

optimal join plan generation for unlabelled querie are strictly

implemented according to [25]. For labelled queries, we firstly

scan the data graph to acquire label frequencies and apply the

optimized cost model we proposed in Section III afterward to

compute an optimal join plan for each query. Here, given a

join plan J , we will show the details of how to implement

CliqueJoin++ on Timely dataflow next.

(1) Building Timely Dataflow. The procedure of building

the dataflow is shown in Algorithm 1. This algorithm is to

compute the join operations round by round to get the final

matches R(q) in a stream.

There are two inputs of the algorithm: an InputHandle
set I and a join plan J . An InputHandle is a handler

in Timely to store data. The data in InputHandle can be

converted to stream directly by invoking to stream operation

in Timely. We use I to store all join unit’s matches R(pi),
where pi ∈ D. Join plan J consists of |J | rounds of join

configurations. One round configuration j ∈ J includes

left subgraph, denoted as j.lg, right subgraph, denoted as

j.rg, join key, denoted as j.join key, and batch parameters,

denoted as j.batch params. With the configurations in j,

we know exactly what we should do in each round of join.

In line 1-2, if there is only one element in I , it means the

query graph q is a join unit, and we don’t need to do join

operations. Therefore, we just return the streaming result of

I[0]. In line 3, for the join order is consistent with post-order

traversal over the binary tree (e.g. Figure 2), we use a stack

StreamStack to store R(Pi), where Pi is a partial query. In

line 5, for each join j in J , we first find its left and right

subgraph matches in stream, denoted as LStream,RStream
(line 6), respectively. In line 6-16, we consider two cases:

(1) If the left/right subgraph is a join unit, we simply fetch its

stream in I . (2) If left/right subgraph is a partial query, we can

get its stream by popping the top element in StreamStack.

Then we use BatchJoin to join LStream and RStream
under the configuration j (line 17), and push the result stream

RstStream onto StreamStack (line 18). When we complete

the iteration over J , we pop the top element as the final result

stream, which is R(q).

Algorithm 1: BuildDataflow(InputHandle set I ,

join plan J)

1 if |I| = 1 then
2 Return I[0].to stream();

3 StreamStack ← ∅;
4 i← 0;
5 forall j ∈ J do
6 LStream← ∅; RStream← ∅;
7 if j.lg is a join unit then
8 LStream← I[i].to stream();
9 i← i+ 1;

10 else
11 LStream← StreamStack.pop();

12 if j.rg is a join unit then
13 RStream← I[i].to stream();
14 i← i+ 1;

15 else
16 RStream← StreamStack.pop();

17 RstStream← BatchJoin(LStream,RStream, j);
18 StreamStack.Push(RstStream);

19 Return StreamStack.pop();

(2) Computing Join Unit Matches. Before we run Algorithm 1,
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we need to precompute all join unit matches R(pi), where pi ∈
D. The process of computing R(pi) is illustrated in Algorithm

2. The inputs of the algorithm include join plan J and the local

data graph G. In line 1, we initialize InputHandle set I with

length |J.D|, which is exactly the number of join units in J . In

line 3-11, for each join j ∈ J , if left/right subgraph j.lg/j.rg
is a join unit, we compute its matches RG(j.lg)/RG(j.rg)
in local graph G and send them to the corresponding input

handler I[i], where pi is the i-th join unit in J . In line 12, we

return the join unit matches I .

Algorithm 2: CompUnitMatches(join plan configura-

tion set J , local data graph G)

1 I ← new InputHandle set with size of |J.D|;
2 i← 0;
3 forall j ∈ J do
4 if j.lg is a join unit then
5 M ← RG(j.lg);
6 send M to I[i];
7 i← i+ 1;

8 if j.rg is a join unit then
9 M ← RG(j.rg);

10 send M to I[i];
11 i← i+ 1;

12 Return I;

(3) Joining Two Streams in Batch. We observe that when

directly implementing join of two streams, the huge interme-

diate results on large data graph will very likely consume

the memory up. Therefore, we implement the external hash

join following buffer-and-batch idea to save memory, which

is shown in Algorithm 3. The inputs of the algorithm are two

streams S1, S2 and the join configuration j. In line 1-2, we

buffer the data in S1/S2 to B1/B2. More specifically, we

buffer the data from stream to a given threshold configured in

j.batch params, and sort it according to j.join key before

spilling to the disk. In line 3-7, while the buffered data B1/B2

is not empty, we read the data from disk to buffer1/buffer2
batch by batch (line 4-5). Then we join buffer1 and buffer2
according to the join key in j, and output the result (line 6-7).

In this way, the memory consumed by each join is one batch of

data and we can configure the batch size in j.batch params
according to the machine’s memory capacity.

Algorithm 3: BatchJoin(left stream S1, right stream

S2, join configuration j)

1 B1 ← S1.buffer(j);
2 B2 ← S2.buffer(j);
3 while B1 �= ∅ and B2 �= ∅ do
4 buffer1 ← B1.next batch();
5 buffer2 ← B2.next batch();
6 result← buffer1 �� buffer2 according to j.join key;
7 Output result;

Datasets Name N/mil M/mil davg(G) dmax(G)

livejournal LJ 4.85 43.37 8.9 20,333
orkut OK 3.07 117.19 38.1 33,313

uk2002 UK 18.5 298.11 16.1 194,955

TABLE I: The Unlabelled Datasets.

IV. EXPERIMENTS

We have conducted extensive experiments for CliqueJoin++

on both unlabelled and labelled data graphs. In this section, we

present the experimental results over the optimizations we have

done to CliqueJoin. Note that we focus only on undirected

graph as the original CliqueJoin, but our implementation can

also support directed queries.

A. Experimental Settings

Environments. We use a cluster of 10 nodes connected via a

10Gpbs switch, and each node has 64GB memory, 1TB disk

and 1 Intel Xeon CPU E3-1220 V6 3.00GHz with 4 physical

cores. We implement CliqueJoin in Timely dataflow system 2

using Rust 1.27. We use 10 machines and each machine uses

3 workers by default.

Metrics. We measure query time T from the average time of

three runs. The query time is actually the slowest worker’s

running time during each run, which excludes graph loading

time as it is negligible compared to query time. We set batch

size to 10, 000 and threshold to 10, 000, 000 by default in

BatchJoin.

Preprocessing Datasets. We preprocess each dataset as fol-

lows: we treat it as a simple undirected graph by removing

self-loop and duplicate edges, reorder the node id according

to their degree and represent it using Compressed Sparse Raw

(CSR)3.

B. Unlabelled Matching

Datasets. We evaluate 3 real graphs of different sizes and

types. The sources of these graphs are from Snap4 and WebG5.

We consider the following two graph types: Social Network

(Soc) and Web Graph (Web). We list the evaluated graphs in

Table I.

Queries. The five queries denoted by q1 to q5 are illustrated

in Figure 3, where the number of nodes vary from 4 to 5 and

the number of edges vary from 4 to 10. We assign the order of

the nodes for symmetry breaking [17] under each query graph.

Here, we have considered all queries for fair comparisons.

Exp1 - Vary Queries. We compare CliqueJoin++ with

CliqueJoin by testing all queries on LJ, which is shown in

Figure 4. We can see that for enumerating the join unit

q3 (4-clique) and q5 (5-clique), CliqueJoin++ outperforms

CliqueJoin by more than 10 times. For q2, CliqueJoin++ is 2

2https://github.com/TimelyDataflow/timely-dataflow
3https://en.wikipedia.org/wiki/Sparse matrix
4http://snap.stanford.edu/data/index.html
5http://law.di.unimi.it/datasets.php
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Fig. 3: Unlabelled Queries.

times faster than CliqueJoin. However, CliqueJoin outperforms

CliqueJoin++ in q1 and q4. The reason is, as we already men-

tioned, that the original implementation of CliqueJoin is hard-

coded for each query, where it can do specific optimizations

for a certain query. However, since CliqueJoin++ targets a

generic implementation that can handle any query, it is not

possible for us to perform query specific optimizations as

the original implementation, which causes incompetent results

compared with CliqueJoin in some queries like q1 and q4.
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Fig. 4: Vary Queries.

Exp2 - Vary Datasets. We compare CliqueJoin++ with

CliqueJoin by querying q2 and q5 on all datasets in order to

show the good performance over different data properties. The

results are shown in Figure 5. We can see that, when querying

q2, CliqueJoin++ generally outperforms CliqueJoin by around

2 times. When querying q5, CliqueJoin++ is 3 to 10 times

faster than CliqueJoin.
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Fig. 5: Vary Datasets.

Exp3 - Scalability. We compare the scalability of

CliqueJoin++ with CliqueJoin on LJ using q2 by varying

Name N/mil M/mil davg(G) dmax(G) #Labels

DG01 3.2 17.24 10.84 464,368 11
DG03 9.28 52.65 11.3 1,346,287 11
DG10 29.99 176.48 11.77 4,282,812 11
DG30 88.79 540.51 12.17 12,684,488 11
DG60 187.11 1246.66 13.32 26,639,563 11

TABLE II: The Labelled Datasets.

number of nodes (6, 8, 10) used in the cluster, whose results

are shown in Figure 6. We can see that CliqueJoin++ is in

general 2 times faster than CliqueJoin.
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Fig. 6: Unlabelled Scalability.

C. Labelled Matching

Due to the lack of big public labelled graphs, we adopt

LDBC social network benchmarking (SNB) [2] for labelled

matching experiment. SNB provides a data generator that can

generate synthetic social networks for given statistics, and

a document [3] that describes the benchmarking tasks. It is

widely used in industry and therefore we form the bench-

marking tasks into subgraph queries in our experiments. There

are, to the best of our knowledge, few published works of

distributed labelled subgraph matching. Thus, in this section,

we will just demonstrate the effectiveness and scalability of

CliqueJoin++ when doing labelled subgraph matching.

Datasets. We list the datasets and their statistics in Table II. All

datasets are generated using the ”Facebook” mode with a span

of 3 years. The dataset’s name, denoted as DGx, represents a

scale factor of x. As mentioned before, we first parse the graph

into undirected simple graph. Then we remove all properties

except the node labels6, and the labels are encoded as integers

to accelerate the matching.

Queries. The labelled queries are shown in Figure 7, which

are generated from SNB’s tasks with following rules: (1)

removing the direction of edges and edge labels; (2) using

one-hop edge for multi-hop edges; (3) removing the ”no edge”

and unconnected graph condition; (4) removing all properties

except the node type as its label. For (1), we do the adaptation

for simplicity although we can support that case. We adapt (2)

and (3) for consistency with the subgraph matching problem

6Our implementation can handle edge-labelled graph as well.
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studied in this paper. We adapt (4) for our implementation

currently can not support property graphs.

q1 q2 q3

q4 q5 q6

Fig. 7: Labelled Queries.

Exp4 - All Labelled Queries. We perform CliqueJoin++ for

all queries on all datasets, and the results are illustrated in

Figure 8. We can see that CliqueJoin++ can finish subgraph

matching in tens of seconds for q2, q3, q4, q5, q6 in all data

graphs, even if DG60 is a billion scale graph. We notice

that the query time for q1 increases sharply when the dataset

becomes larger. The reason is that the algorithm spends a lot

of time computing the stars’ matches in q1 (q1 is decomposed

into two 2-stars) due to the poor filter information of q1’s

join units in data graph.
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Exp5 - Labelled Scalability. We evaluate the labelled match-

ing scalability of q1 and q4 on DG10 by varying the number

of nodes used in the cluster (6, 8, 10), and the results are

demonstrated in Figure 9. We can see that when decreasing

the number of machines used in the cluster, the query time

increases almost linearly, which shows that CliqueJoin++ has

great scalability for labelled matching.

V. REALTED WORK

Subgraph Enumeration. The first practical algorithm for

subgraph enumeration was proposed by Ullmann in [37]. It is

a backtracking algorithm which finds solutions by increasing

partial solutions or abandoning them when it determines they
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Fig. 9: Labelled Scalability.

can not reach to final results. Most of existing algorithms

for subgraph enumeration follow Ullmann’s backtracking ap-

proach. They exploit different join orders, pruning rules, and

auxiliary information to narrow the search space, thereby en-

hancing the performance. In particular, VF2 [13] and QuickSI
[33] use connected matching order that generates the matching

order by selecting a vertex connected to one of the already

selected vertices rather than a random selection to prune false

positive candidates as early as possible. GraphQL [20] and

SPath [40] focus on reducing the candidates of query vertices

by exploiting neighborhood-based filtering. TurboISO [18] and

the boost technique in [30] propose to merge vertices with

same labels and the same neighbours in q and G respectively

to reduce the matching complexity. [26] provides an in-depth

comparison of above mentioned subgraph isomorphism algo-

rithms. A more recent work in [6] uses a data structure called

compact path index (CPI) to store the potential embeddings of

a spanning tree of the query graph to improve both time and

space efficiency. Algorithms of subgraph enumeration mainly

focus on answering a single query, [31] studies the problem of

multiple query optimization (MQO) for subgraph enumeration.

The details of distributed subgraph enumeration algorithms can

be found in Section I.

Subgraph Containment Search. Let D = {g1, g2, . . . , gn} be

a graph database that has n graphs, the problem of subgraph

containment search over a graph database is to identify if the

graphs in D contain the given query graph q. To speed up

the search, many graph-feature based approaches have been

proposed, performing graph indexing and adopting a filter-

and-verification framework. As a result of such approach,

false positives are removed by a pruning strategy before

subgraph isomorphism algorithm is performed on each of the

remaining candidates to obtain the final results. Existing works

includes frequent subgraph mining based approaches (e.g.,

gIndex [38], Tree+Δ [41], and FG-Index [10]) and exhaustive
enumeration based approaches (e.g., gCode [42], CT-Index

[23], GraphGrep [15], GraphGrepSX [7], Closure-tree [19],

and Grapes [14]). In approximate graph containment search,

TALE [36] was proposed.
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VI. CONCOLUSION

In this paper, we study the distributed subgraph matching al-

gorithm CliqueJoin. Discovering the limitations of CliqueJoin
that can not handle labelled subgraph matching, we propose

CliqueJoin++ to generalize it by extending its cost evaluation

function to labelled graphs so that it can generate optimal

join plan for labelled query graphs. We further improve its

performance by migrating CliqueJoin from MapReduce to

Timely dataflow system, which can significantly reduce the

I/O cost. We conduct extensive experiments on both unla-

belled and labelled matching. The experimental results show

that CliqueJoin++ is up to 10 times faster than CliqueJoin
for unlabelled matching, and has excellent performance and

scalability doing labelled matching.
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