
Most Probable Maximum Weighted Butterfly Search
Yu Shao 1, Peng Cheng 1, Longbin Lai 2, Long Yuan 3, Wangze Ni 4∗, Xuemin Lin 5

1East China Normal University, Shanghai, China; 2Alibaba Group, Hangzhou, China;
3Nanjing University of Science and Technology, Nanjing, China; 4Zhejiang University, Hangzhou, China;

5Shanghai Jiaotong University, Shanghai, China
yushao@stu.ecnu.edu.cn; pcheng@sei.ecnu.edu.cn; longbin.lailb@alibaba-inc.com; longyuan@njust.edu.cn

niwangze@zju.edu.cn; xuemin.lin@gmail.com

Abstract—Uncertain butterflies are fundamental and popular
graphlet motifs within uncertain bipartite networks, serving as a
crucial metric in structural analysis. Despite extensive research
have studied butterflies sufficiently on deterministic networks,
few of works explore uncertain butterflies. In this paper, we intro-
duce the Most Probable Maximum Weighted Butterfly (MPMB),
which holds the highest probability of becoming a maximum
weighted butterfly on an uncertain bipartite network. Proved that
searching MPMBs is NP-Hard, we then proposed two sampling-
based methods, namely Ordering Sampling (OS), and Ordering-
Listing Sampling (OLS). The OS method is suitable for single-
trial sampling, while the OLS method is optimized for multiple
trials, which first finds candidate butterflies in rough before
searching MPMBs. Our experimental results indicate that our
basic method (OS) performs 1000x faster than the baseline and
the optimized method (OLS) achieves another 180x speedup.

I. INTRODUCTION
Uncertain networks are graphs where the existence of each

edge is a probability event (i.e., uncertainty) [1], [2], [3].
Recently, uncertainty connections have gained great interest in
modeling real-world relations, such as connection reliability
in routing networks [4], [5], [6], traffic awareness in road
networks [7], [8], [9], and confidence in recommendation
networks [10]. Recent studies have extended some traditional
graph algorithms on deterministic networks to uncertain net-
works, e.g., shortest path query [11], [12], maximal clique
search [13], [14], and nearest neighbor search [15], [16].

As a widely studied motif in graph researches, butterfly is
a 4-cycle subgraph (also known as rectangle [17] or (2,2)-
biclique [18]) on a bipartite network. Bipartite networks are
useful in many applications, e.g., in brain networks [19], [20]
and task matching networks [21], [22], [23], vertices represent
left-right regions and worker-task entities, respectively. If
edges are weighted, a butterfly with the largest weight is
called the maximum weighted butterfly, representing a strong
correlation between two pairs of vertices.

For example, Figure 1(a) shows an uncertain bipartite net-
works with two partitions {u1, u2} and {v1, v2, v3}. Each edge
is associated with a specific weight and probability. Figure 1(b)
is a possible world of the uncertain bipartite network and a
butterfly on the possible world. The probability of this possible
world is (1− 0.5) ∗ 0.6 ∗ 0.8 ∗ 0.3 ∗ 0.4 ∗ 0.7 = 0.02016. The
butterfly with four vertices (u1, u2, v2, v3) has weight 7.

*Wangze Ni is also with The State Key Laboratory of Blockchain and Data
Security; Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and
Data Security.

ଶ ଷ

ଵ ଶ

ଵ ଶ ଷ

ଵ ଶ
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 𝐸𝑑𝑔𝑒

 0.5 2 (𝑢ଵ, 𝑣ଵ)

 0.6 2 (𝑢ଵ, 𝑣ଶ)

 0.8 1 (𝑢ଵ, 𝑣ଷ)

 0.3 3 (𝑢ଶ, 𝑣ଵ)

 0.4 3 (𝑢ଶ, 𝑣ଶ)

 0.7 1 (𝑢ଶ, 𝑣ଷ)

ଵ ଶ ଷ

ଵ ଶ

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.02016 𝑊𝑒𝑖𝑔ℎ𝑡 = 7

ଶ ଷ

ଵ ଶ

ଵ ଶ ଷ

ଵ ଶ
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 𝐸𝑑𝑔𝑒

 0.5 2 (𝑢ଵ, 𝑣ଵ)

 0.6 2 (𝑢ଵ, 𝑣ଶ)

 0.8 1 (𝑢ଵ, 𝑣ଷ)

 0.3 3 (𝑢ଶ, 𝑣ଵ)

 0.4 3 (𝑢ଶ, 𝑣ଶ)

 0.7 1 (𝑢ଶ, 𝑣ଷ)

ଵ ଶ ଷ

ଵ ଶ

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.02016 𝑊𝑒𝑖𝑔ℎ𝑡 = 7

(a) An uncertain bipartite network with edge weights and proba-
bilities.

ଶ ଷ

ଵ ଶ

ଵ ଶ ଷ

ଵ ଶ
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 𝐸𝑑𝑔𝑒

 0.5 2 (𝑢ଵ, 𝑣ଵ)

 0.6 2 (𝑢ଵ, 𝑣ଶ)

 0.8 1 (𝑢ଵ, 𝑣ଷ)

 0.3 3 (𝑢ଶ, 𝑣ଵ)

 0.4 3 (𝑢ଶ, 𝑣ଶ)

 0.7 1 (𝑢ଶ, 𝑣ଷ)

ଵ ଶ ଷ

ଵ ଶ

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.02016 𝑊𝑒𝑖𝑔ℎ𝑡 = 7

ଶ ଷ

ଵ ଶ

ଵ ଶ ଷ

ଵ ଶ
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 𝐸𝑑𝑔𝑒

 0.5 2 (𝑢ଵ, 𝑣ଵ)

 0.6 2 (𝑢ଵ, 𝑣ଶ)

 0.8 1 (𝑢ଵ, 𝑣ଷ)

 0.3 3 (𝑢ଶ, 𝑣ଵ)

 0.4 3 (𝑢ଶ, 𝑣ଶ)

 0.7 1 (𝑢ଶ, 𝑣ଷ)

ଵ ଶ ଷ

ଵ ଶ

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.02016 𝑊𝑒𝑖𝑔ℎ𝑡 = 7(b) A possible world with probability 0.02016 and a butterfly with
weight 7.

Fig. 1: An example of an uncertain bipartite network, a possible
world, and a butterfly. A possible world is a sample of the uncertain
network.

Weight and probability are two fundamental indicators of
the relationship between entities. The weight of a butterfly
reflects the relationship strength on the whole network, while
the high probability indicates the existence possibility of the
relationship. Intuitively, we want to find a butterfly that owns
both a relatively high weight and probability.

In this paper, we consider these two indicators and study to
find the Most Probable Maximum Weighted Butterfly (MPMB)
that has the highest accumulated probability to be the maxi-
mum weighted butterfly among all the possible worlds on an
uncertain network.

Diversity of MPMB. MPMB can reveal various important
regions in a bipartite network. Suppose a dense region con-
tains multiple butterflies, MPMB only counts one butterfly in
each possible world. Instead of mining massive but similar
butterflies [24], MPMB has the flexibility to return a suitable
number of butterflies for the scattered visualization. We show
the importance and usefulness of MPMBs with the following
use cases.

Use case 1: Recommendation Systems. A user-item
network is a bi-partite network where two vertex sets are
users and items, respectively, and edges indicate behaviors
such as liking and buying [25]. The User-based Collaborative
Filtering (UserCF) technique [26], [27] is one of the most

Alice

Bob

Football

Harry Potter

Cindy

David

Skating

Chess

𝑃𝑟 = 0.9

𝑃𝑟 =
0.8

𝑃𝑟 = 0.8𝑃𝑟
=
0.9

𝑃𝑟 = 0.5184

𝑃𝑟 = 0.8

𝑃𝑟 =
0.7

𝑃𝑟 = 0.6𝑃𝑟
=
0.7

𝑃𝑟 = 0.2352

𝑤 = 1.1𝑤
=
1.3

𝑤
=
1.1

𝑤 = 1.3

𝑤 = 4.8

(a) Most Probable Butterfly

Alice

Bob

Football

Harry Potter

Cindy

David

Skating

Chess

𝑃𝑟 = 0.9

𝑃𝑟 =
0.8

𝑃𝑟 = 0.8𝑃𝑟
=
0.9

𝑃𝑟 = 0.5184

𝑃𝑟 = 0.8

𝑃𝑟 =
0.7

𝑃𝑟 = 0.6𝑃𝑟
=
0.7

𝑃𝑟 = 0.2352

𝑤 = 1.1𝑤
=
1.3

𝑤
=
1.1

𝑤 = 1.3

𝑤 = 4.8

(b) Most Probable Maximum
Weighted Butterfly

Fig. 2: Same interests can be used for recommendation. To avoid the
impact of hot items, MPMB adds a weight on each edge to improve
the quality of recommendations.

popular recommending methods, which assumes that similar
users have similar likes/dislikes. Since a recommendation can
be modeled as a biclique [28], [29], MPMBs represent the
expected most valuable recommendations.

The UserCF often produces similar recommendations. For
instance in Figure 2(a), Alice and Bob both like football
and Harry Potter, forming a butterfly pattern with a high
probability Pr = 0.5184. However, there may be millions of
other users also interested in these two hot items, which is a
common phenomenon and worthless to recommend.

Instead, two users who are both interested in the unpopular
items have a more obvious similarity. According to this idea,
some optimized UserCF [30], [31] add a reward weight on
the edge connected to the cold items. Take Figure 2(b) as an
example, skating and chess are relatively unpopular. We assign
higher weights to these edges. This butterfly has a relatively
lower probability (Pr = 0.2352) but a higher weight (w =
4.8), enhancing the diversity of recommendations [32].

Use case 2: Brain Network. A brain can be modeled as
an uncertain network, where vertices are different Regions
of Interest (ROIs) and edges are region connections. Edge
weight and probability represent the distance and the cor-
relation between two ROIs, respectively. We use Automated
Anatomical Labeling (AAL) atlas [33] to locate ROIs and
Autism Brain Imaging Data Exchange (ABIDE) [34] dataset
to compute ROI-pairs probabilities. For hemisphere-crossing
activities, edges between the left and right hemispheres are
extracted to form a bipartite uncertain network. The dataset
has the Typical Controls (TC) group and the Autism Spectrum
Disorder (ASD) group. People in the TC group have more
active connections between far regions, while ASD patients
are lacking in long connections.

We calculate the top-10 MPMBs on the datasets in a
TC brain and an ASD brain, as shown in Figure 3(a) and
Figure 3(b). These butterflies are concentrated in four clus-
ters, indicating more strong activities among these regions.
Moreover, the color represents activation intensity, which is on
average twice as high in TC compared to ASD, since patients
generally have weak connections between long regions.

MPMB is an effective measurement in uncertain bipartite
network analysis, but hard to compute directly. The problem is

(a) MPMBs in TC. (b) MPMBs in ASD.

Fig. 3: MPMBs results in the Typical Controls (TC) group and the
Autism Spectrum Disorder (ASD) group.

that given the exponential possible worlds, we cannot afford
the computation cost to enumerate all of them and find the
butterfly with the maximum weight and the highest existing
possibility. Simply enumerating an exponential number of
possible worlds and then finding the one with the maximum
weight and the highest existing possibility is intractable and
thus unacceptable. The most practical approach up to now is
based on sampling, such as the Monte-Carlo Sampling [35]
and Karp-Luby Sampling [36], evaluating with finite and little
trials to approximate the exact result. Despite these sampling-
based methods are already applied in a wide range of prob-
lems, there are few related optimizations towards the sampling
process. We optimize existing solutions in the entire workload
on calculating MPMBs, including the sampling process and
computing process. Our contributions are as follows:

• We define the MPMB problem and prove its hardness in
Section III. A baseline method MC-VP is introduced in
Section IV.

• In Section V, we propose a method called Ordering
Sampling (OS) with some ordering optimization based
on MC-VP, which is efficient for single-trial sampling.

• In Section VI, we propose Ordering-Listing Sampling
(OLS), which uses OS to list some candidate butterflies
first and then computes probabilities. We also compare
our optimized sampling algorithm to the popular Karp-
Luby algorithm with some theoretical analysis.

• In Section VII, we extend the definition of the MPMB
problem and claim that our methods can generate multiple
MPMBs, called the top-k MPMBs.

• We implement our methods and report experimental re-
sults in Section VIII.

II. RELATED WORK

Threshold-based methods. Threshold-based methods aim
to mine all instances based on a given pattern and probability
threshold, since an instance with a low probability is con-
sidered meaningless. Depending on the density of instances,
these methods can either enumerate all instances [37], [38],
[39], [40], or simply count the number [41], [42]. One general
framework is to list all instances on the backbone network (i.e.,
a possible world containing all edges) first, and then compute
the probability of each instance [43], [44]. Therefore, strategies
used on deterministic networks can also be applied to the

backbone network. To optimize this process, many studies
approximate the probability of an instance during the initial
listing process, discarding instances with low probabilities
early on [42], [40].
Distribution-based methods. Rather than merely counting the
numbers based on a single threshold, distribution-based meth-
ods aim to count instances across all possible worlds, thereby
generating a distribution of count numbers. This approach is
more meaningful as it operates in real-world scenarios and
considers the correlations between instances. However, it is
intractable to enumerate all possible worlds. Recent works
focus on sampling methods for estimating the mean [45], the
variance [46], and the probability mass function [44].
Probable-based methods. Distribution-based methods can
be thought of as counting over all possible worlds, while
probability-based methods are akin to enumerating over all
possible worlds. These methods seek the instance with the
specific target (e.g., the shortest path [12] or the densest
subgraph [47]) in each possible world and aggregate their
probabilities. Similar to distributed-based methods, it’s imprac-
tical to enumerate all possible worlds. Instead, most imple-
mentations use a sampling process to select potential worlds
based on probability. The main advantage of probability-based
methods is reporting real instances with high probabilities.

As both distribution-based and probability-based methods
utilize a sampling process to generate possible scenarios, it’s
imperative to ensure the sampling efficiency and accuracy.

Monte-Carlo Sampling [35] is a fundamental and well-
known sampling method. It uses a limited number of repeated
random trials to approximate real distribution. For uncertain
networks, Monte-Carlo sampling can generate a series of
limited possible words, which can be seen as a close estimation
of the precise result [44], [47]. Karp-Luby Sampling [36], [48]
is a Monte Carlo sampling variant specifically designed for
sampling the union of multiple variables, particularly when the
probability is small. The main idea of Karp-Luby sampling
involves applying reject sampling over the union area and
discarding repeated parts. Regardless of how small the union
probability might be, Karp-Luby sampling directly samples
within the union area, thus achieving higher accuracy [12],
[49].
Our methods. Our proposed methods follow some probable-
based methods that apply both Monte-Carlo and Karp-Luby
sampling. Instead of directly comparing the time complexity
using a fixed trial number, we analysis the approximation
guarantees and compute trial number lower bound. Therefore,
we confirm that all methods have the same accuracy and make
the comparison more reasonable.

III. PRELIMINARIES
This section gives the formal definition and the hardness

proof of our problem. Some key notations are presented in
Table I.

A. Problem Definition
Definition 1. (Uncertain Bipartite Weighted Network) An
uncertain bipartite network is a graph G = (V =

TABLE I: Notations.
Notation Definition

G uncertain bipartite network
H backbone graph
Wi possible world
B butterfly

Pr[·] probability
P (B) the probability of B being maximum
SMB maximum butterflies set
CMB maximum butterflies candidate set
∠ angle

A(·) angle set
N trial number

(L,R), E, p, w), where V is the vertex set consisting of two
disjoint parts L,R. L ∩ R = ∅, E ⊆ L × R is the edge set,
and p : E → [0, 1], w : E → R maps each edge to a real
number as the probability and weight, respectively.

We also define the backbone graph of G as H = (V =
(L,R), E, w), which is a deterministic network with the same
structure.

Definition 2. (Possible World) A possible world Wi = (V =
(L,R), Ei, w) is a subgraph of H by sampling each edge e ∈
E with probability p(e) randomly and independently. Thus,
the probability of this possible world is:

Pr(Wi) =
∏
e∈Ei

p(e)
∏
e/∈Ei

(1− p(e)) (1)

Since each edge has two possible sampling results (exists or
not), there will be up to 2|E| possible worlds, denoted by W ,
i.e., W = (W1,W2, ...,W2|E|).

Definition 3. (Angle) An angle ∠(u, v, w) contains two edges
(u, v) and (v, w) with a middle-vertex v. An angle can be
regarded as a path with 3 vertices. Therefore, u and w must
belong to one part of L or R, and v belongs to the other.

Definition 4. (Butterfly) A butterfly B in a possible
world Wi = (V = (L,R), Ei, w) consists of two
vertices u1, u2 ∈ L and v1, v2 ∈ R with four
edges (u1, v1), (u1, v2), (u2, v1), (u2, v2) ∈ Ei, denoted by
B(u1, u2, v1, v2). The weight of a butterfly is defined as the
summation of all four edges:

w(B) = w(u1, v1) + w(u1, v2) + w(u2, v1) + w(u2, v2) (2)

A possible world Wi may contain many butterflies with the
same maximum weight. Those butterflies with the maximum
weight are denoted by a set SMB(Wi):

SMB(Wi) = {B | ∀Bj ⊑ Wi, w(B) ≥ w(Bj)} (3)

The maximum weighted butterfly B in worlds Wi and Wj

may be different. Specifically, the cumulative probability of
a butterfly being maximum weighted among all the possible
worlds is:

P (B) =
∑

Wi∈W

Pr(Wi)× 1[B ∈ SMB(Wi)] (4)

Finally, there comes the problem we studied in this paper:

Definition 5. (Most Probable Maximum Weighted Butter-
fly (MPMB)) Given an uncertain weighted network G = (V =
(L,R), E, p, w), a most probable maximum weighted butterfly
is:

MPMB(G) = argmax
B

P (B) (5)

B. Hardness of the MPMB Problem

To present the hardness of the MPMB problem, we first
define the MPMB decision problem based on Definition 5:

Definition 6. (MPMB Decision Problem) Given a probability
p, whether there exists a butterfly B that P (B) ≥ p.

The MPMB decision problem is even not an NP problem
since we cannot verify a solution in polynomial time, i.e.,
compute the MPMB probability P (B) for a given butterfly B
and check whether P (B) ≥ p. Therefore, the MPMB decision
problem is an NP-Hard problem.

Lemma III.1. Given an uncertain weighted network G =
(V = (L,R), E, p, w) and a butterfly B ⊑ G, the computation
of the probability of B being a maximum weighted butterfly
of G is #P-Hard.

Proof. We prove the #P-Hardness by a reduction from Mono-
tone #2-SAT. Monotone #2-SAT is a 2-SAT counting problem
that each literal is positive, i.e.,

|{x | F (x) = 1}|
where F = c1 ∧ c2 ∧ ... ∧ cr, ci = (yi1 ∨ yi2)

(6)

Given such a #2-SAT instance with n variables y1, y2, ..., yn,
we first construct a related uncertain weighted bipartite
network G# = (V# = (L#, R#), E#, p#, w#).
Here L# = {u0, u1, u2, ..., un, un+1, un+2} and
R# = {v0, v1, v2, ..., vn, vn+1, vn+2}. Each variables
yi corresponds to ui ∈ L# and vi ∈ R#, while
u0, un+1, un+2, v0, vn+1, vn+2 are six extra vertices. Edge
set E# includes four parts, (i) for each variable yi, add an
edge (ui, vi) with probability p = 0.5 and weight w = 1,
(ii) for each clause ci = (yi1 ∨ yi2), i1 ̸= i2, add two edges
(ui1, vi2), (ui2, vi1) with probability p = 1 and weight w = 1,
(iii) for each clause ci = (yi1 ∨ yi2), i1 = i2, we can regard
it as ci = yi1 = yi1 ∨ 1 and use u0 and v0 to represent the
constant true value and add two edges (ui1, v0), (u0, vi1)
with probability p = 1 and weight w = 1, and (iv) let
B(un+1, un+2, vn+1, vn+2) form a independent butterfly with
four edges which have probability p = 1 and weight w = 0.5.

Note that only edge (ui, vi) has uncertainty. Let yi be true if
(ui, vi) does not exist and vice versa. Thus, each interpretation
of y1, y2, ..., yn corresponds to a possible world, and each
clause ci corresponds to a butterfly Bi(ui1, ui2, vi1, vi2).

Now we try to compute the probability of
B(un+1, un+2, vn+1, vn+2) being a maximum weighted
butterfly. Since w(Bi) = 4 but w(B) = 2, B is maximum
means all Bi are incomplete. Thus, (ui1, vi1) and (ui2, vi2)
cannot exist at the same time, leading to ci = true and F
is also true. On the other hand, if B is not maximum, there

must be one Bk that exists. So ck will be false and F is
false. Finally, we have:

P (B) =
∑

Wi∈W

Pr(Wi)× 1[B ∈ SMB(Wi)]

=
1

2n
·
∑

Wi∈W

1[B ∈ SMB(Wi)]

=
1

2n
· |{x | F (x) = 1}|

If P (B) can be computed, the #2-SAT problem can also be
solved in polynomial reduction. However, #2-SAT is a #P-
Hard problem, which implies the computation of the proba-
bility of B being a maximum weighted butterfly of G is at
least #P-Hard.

IV. BASELINE: MONTE-CARLO WITH VERTEX PRIORITY

Due to MPMB being an NP-hard problem, it is intractable
to solve it efficiently and accurately. In practice, to solve such
kind of hard problem, Monte-Carlo sampling is a good choice.
With the inspiration of the state-of-the-art butterfly enumerat-
ing algorithm, ButterFly Counting with Vertex Priority (BFC-
VP) [50], we propose the baseline algorithm Monte-Carlo
with Vertex Priority (MC-VP) to solve MPMB as shown in
Algorithm 1.

MC-VP assigns each vertex u a priority order o(u) based
on their degrees. A vertex with a larger degree will have a
larger priority order. Then in each trial, we randomly choose
a possible world Wi from W and compute its maximum
butterfly set SMB with MC-VP, which generates angles first
with priority order and combines them into butterflies. The
only difference is that the Monte-Carlo sampling only consists
of Nmc rounds. When Nmc is sufficiently large, the probability
(i.e., P (B)) can be approximated by the mean of independent
samples. Recall the theorem [51] about the guarantee of the
trial number N :

Theorem IV.1. Let µ and µ̂ be the target and the estimated
probability, respectively. If N≥(1/µ) · (4 ln(2/δ)/ϵ2), the
Monte-Carlo Sampling can achieve ϵ−δ approximation, i.e.,
Pr(|µ̂− µ| > ϵµ) ≤ δ [51].

For example, if P (B) = 0.01, ϵ = 0.1, δ = 0.01, i.e., the
probability of the related error larger than 10% is no more
than 0.01, N should be larger than around 2 · 105.

According to Theorem IV.1, an important observation is that
the speed of MC-VP is not related to the size of all possible
worlds. Even when the network G is very large, we can still
use a small N to sample.

Lemma IV.1. The time and space complexity of each trial in
Algorithm 1 are both O(

∑
e(u,v)∈E Fdeg(u, v)+|SMB |) where

|SMB | is the number of maximum butterflies and the degree
function Fdeg is defined as:

Fdeg(u, v) =

{
d̄(v) o(u) > o(v)

d̄(u) o(u) < o(v)

where d̄(u) is the expected degree of u, i.e., d̄(u) =∑
e(u,v)∈E p(e).

Algorithm 1: Monte-Carlo with Vertex Priority
Input: trial number Nmc, an uncertain bipartite weighted

network G = (V = (L,R), E, p, w)
Output: the most probable maximum butterfly B

1 SMB ← ∅
2 compute priority order o(u) for each vertex u ∈ V
3 foreach r = 1 to Nmc do
4 randomly choose Wi from W
5 for ui ∈ V do
6 A← ∅
7 for ea = (ui, uj) ∈ NWi(ui), o(ui) > o(uj) do
8 for eb = (uj , uk) ∈ NWi(uj), o(ui) > o(uk)

do
9 ∠new ← ea ⊕ eb

10 A(uk)← A(uk) ∪ ∠new

11 foreach A(uk) do
12 foreach ∠x,∠y ∈ A(uk), x ̸= y do
13 B ← ∠x ⊕ ∠y

14 if w(B) > w(SMB) then
15 SMB ← {B}
16 else if w(B) = w(SMB) then
17 SMB ← SMB ∪ {B}

18 foreach B ∈ SMB do
19 P (B)← P (B) + 1/Nmc

20 return argmax
B

P (B)

Proof. MC-VP will cost O(
∑

e(u,v)∈E min{deg(u), deg(v)})
to generate all angles due to the priority order [50]. Since
each possible worlds contain few edges, the real cost is the
expected degree instead of the real degree. So we use the
degree function Fdeg(u, v) to compute the expected degree of
a vertex with lower priority order (i.e., the middle-vertex).
Finally, the number of butterflies could be very large and
requires to be considered. The space complexity is the same
since all angles and butterflies might be saved.

V. ORDERING SAMPLING

The MC-VP method is faster than direct enumeration meth-
ods because it only samples a subset of all potential worlds.
However, its efficiency is not guaranteed when searching for
maximum weighted butterflies. This process has three main
bottlenecks: (1) it lists all edges, (2) it generates and stores
all angles, and (3) it creates all butterflies. Our first method,
Ordering Sampling (OS), addresses these bottlenecks through
three optimizations: Edge Ordering, Angle Ordering, and Fast
Butterfly Creating, respectively.

A. Ordering Sampling Framework

Algorithm 2 shows our first method, Ordering Sampling
(OS), and the illustration process is shown in Figure 4. It also
consists of Nos rounds, in which all edges will be sampled
independently, denoted by Ê in Line 5. A possible world
example is shown in Figure 4(a).

The main difference is that OS uses edge weights as the
priority order. All edges are added by the weight order in Line
8 and generate all angles in Line 11, shown in Figure 4(b).

ignored𝐴ଶ(𝑢, 𝑢)𝐴ଵ(𝑢, 𝑢)(𝑢, 𝑢)

(𝑢ଵ, 𝑣ଵ, 𝑢ଶ)
𝑤 = 5

(𝑢ଵ, 𝑢ଶ)

(𝑢ଵ, 𝑣ସ, 𝑢ଷ)
𝑤 = 2

(𝑢ଵ, 𝑣ଶ, 𝑢ଷ)
𝑤 = 4

𝑢ଵ, 𝑣ଵ, 𝑢ଷ
𝑤 = 6

(𝑢ଵ, 𝑢ଷ)

(𝑢ଶ, 𝑣ଵ, 𝑢ଷ) (𝑢ଶ, 𝑣ଷ, 𝑢ଷ)
𝑤 = 5

(𝑢ଶ, 𝑢ଷ)

ଵ ଶ ଷ ସ

ଵ ଶ ଷ

ଵ ଶ

ଵ ଷ
𝑢ଵ, 𝑣ଵ, 𝑢ଷ

𝑤 = 6

𝑢ଵ, 𝑣ଶ, 𝑢ଷ
𝑤 = 4

ଵ ଷ

ଶ ଷ

𝑢ଶ, 𝑣ଵ, 𝑢ଷ
𝑤 = 5

𝑢ଶ, 𝑣ଷ, 𝑢ଷ
𝑤 = 5

(a) A possible world. Thick lines, thin lines, and
dash lines have weight 3, 2, 1, respectively.

ignored𝐴ଶ(𝑢, 𝑢)𝐴ଵ(𝑢, 𝑢)(𝑢, 𝑢)

(𝑢ଵ, 𝑣ଵ, 𝑢ଶ)
𝑤 = 5

(𝑢ଵ, 𝑢ଶ)

(𝑢ଵ, 𝑣ସ, 𝑢ଷ)
𝑤 = 2

(𝑢ଵ, 𝑣ଶ, 𝑢ଷ)
𝑤 = 4

𝑢ଵ, 𝑣ଵ, 𝑢ଷ
𝑤 = 6

(𝑢ଵ, 𝑢ଷ)

(𝑢ଶ, 𝑣ଵ, 𝑢ଷ) (𝑢ଶ, 𝑣ଷ, 𝑢ଷ)
𝑤 = 5

(𝑢ଶ, 𝑢ଷ)

ଵ ଶ ଷ ସ

ଵ ଶ ଷ

ଵ ଶ

ଵ ଷ
𝑢ଵ, 𝑣ଵ, 𝑢ଷ

𝑤 = 6

𝑢ଵ, 𝑣ଶ, 𝑢ଷ
𝑤 = 4

ଵ ଷ

ଶ ଷ

𝑢ଶ, 𝑣ଵ, 𝑢ଷ
𝑤 = 5

𝑢ଶ, 𝑣ଷ, 𝑢ଷ
𝑤 = 5

(b) The index of Ordering Sampling Method.

ignored𝐴ଶ(𝑢, 𝑢)𝐴ଵ(𝑢, 𝑢)(𝑢, 𝑢)

(𝑢ଵ, 𝑣ଵ, 𝑢ଶ)
𝑤 = 5

(𝑢ଵ, 𝑢ଶ)

(𝑢ଵ, 𝑣ସ, 𝑢ଷ)
𝑤 = 2

(𝑢ଵ, 𝑣ଶ, 𝑢ଷ)
𝑤 = 4

𝑢ଵ, 𝑣ଵ, 𝑢ଷ
𝑤 = 6

(𝑢ଵ, 𝑢ଷ)

(𝑢ଶ, 𝑣ଵ, 𝑢ଷ) (𝑢ଶ, 𝑣ଷ, 𝑢ଷ)
𝑤 = 5

(𝑢ଶ, 𝑢ଷ)

ଵ ଶ ଷ ସ

ଵ ଶ ଷ

ଵ ଶ

ଵ ଷ
𝑢ଵ, 𝑣ଵ, 𝑢ଷ

𝑤 = 6

𝑢ଵ, 𝑣ଶ, 𝑢ଷ
𝑤 = 4

ଵ ଷ

ଶ ଷ

𝑢ଶ, 𝑣ଵ, 𝑢ଷ
𝑤 = 5

𝑢ଶ, 𝑣ଷ, 𝑢ଷ
𝑤 = 5

(c) SMB with two maximum butterflies of 4(a).

Fig. 4: The framework of the Ordering Sampling Method. There are
6 angles in Figure 4(a), classified by their endpoints (vi, vj) and
sorted by their weights. In Figure 4(b), only five angles will be saved
(marked with orange blocks) and the rest angles will be ignored.
Finally, two maximum butterflies are created from A1(vi, vj) and
A2(vi, vj) in Figure 4(c).

We also use wmax to save the weight of current maximum
butterflies in Line 13. Therefore, all butterflies whose weight
is wmax will be created in Line 15-19 and added into SMB

in Line 20, shown in Figure 4(c).

B. Edge Ordering

The Ordering Sampling method uses edge ordering to
prevent the need to enumerate all edges. The order in which
edges are added does not have any impact on the final result.
Therefore, the first optimization is to sort the edges according
to their weights, as indicated in Line 1 of Algorithm 2. If
the upcoming edge has a lower weight, the corresponding
angle and butterfly will also have a relatively lower weight.
Consequently, it’s acceptable to skip these lower-weight edges.
Specifically, as demonstrated in Lines 1 and 9, if the current
edge weight, w(ei), plus the three largest weights w =
w(e1) + w(e2) + w(e3), is still less than the weight of the
current maximum butterfly wmax, all subsequent edges can
be pruned.

C. Angle Ordering

MC-VP generates and stores all angles to create butter-
flies. However, it is possible to only consider the maximum
weighted butterfly, disregarding some lower-weight angles,
without affecting the result. Specifically, storing the two largest
weights is sufficient. Based on this idea, Algorithm 2 uses
A1(ui, uk) and A2(ui, uk) to store the largest and second-
largest weighted angles, respectively.

We prove the correctness by contradiction. Suppose there is
a maximum butterfly includes an angle ∠c which is ignored,

Algorithm 2: Ordering Sampling
Input: trial number Nos, an uncertain bipartite weighted

network G = (V = (L,R), E, p, w)
Output: the most probable maximum butterfly B

1 sort edges ei ∈ E by the edge weight w(ei)
2 w ← w(e1) + w(e2) + w(e3) ▷ Section V-B

3 for r = 1 to Nos do
4 SMB ← ∅
5 Ê ← Sample ei with probability p(ei) independently
6 N̂E ← ∅, wmax ← 0
7 A1, A2 ← ∅
8 foreach ea = (ui, vj) ∈ Ê, ui ∈ L, vj ∈ R do
9 if w(ea) + w < wmax then break ▷ Section V-B

10 foreach eb = (vj , uk) ∈ N̂E(vj) do
11 ∠new ← ea ⊕ eb
12 update A1(ui, uk), A2(ui, uk) ▷ Section V-C

13 update wmax ▷ Section V-D

14 N̂E(vj)← N̂E(vj) ∪ {ei}
15 foreach ui, uk ∈ L, ui ̸= uk do ▷ Section V-D

16 if 2 ∗ w(A1(ui, uk)) = wmax then
17 B ← ∠a ⊕ ∠b ∠a,∠b ∈ A1(ui, uk),∠a ̸= ∠b

18 else if w(A1(ui, uk)) + w(A2(ui, uk)) = wmax

then
19 B ← ∠a⊕∠b ∠a∈A1(ui, uk),∠b∈A2(ui, uk)

20 SMB ← SMB ∪B

21 foreach B ∈ SMB do
22 P (B)← P (B) + 1/Nos

23 return argmax
B

P (B)

i.e., A1(ui, uk) and A2(ui, uk) are not empty but ∠c not
belongs to any one. However, we can always use ∠a ∈
A1(ui, uk) and ∠b ∈ A2(ui, uk) to form a larger butterfly,
which contradicts the condition.

Table II shows the updating process in Line 12 with
different cases. w(∠new) is the weight of ∠new. w(A1) and
w(A2) denote the weight of angles saved in A1(ui, uk) and
A2(ui, uk), respectively.

TABLE II: Updating cases.
condition A1 A2

w(∠new) > w(A1) {∠new} A1

w(∠new) = w(A1) A1 ∪ {∠new} A2

w(∠new) > w(A2) A1 {∠new}
w(∠new) = w(A2) A1 A2 ∪ {∠new}
w(∠new) < w(A2) A1 A2

D. Fast Butterfly Creating

Unlike the MC-VP method, which creates all possible
butterflies before selecting the maximum weighted ones, Algo-
rithm 2 directly creates maximum weighted butterflies based
on A1(ui, uk) and A2(ui, uk). There are two specific cases.
If |A1(ui, uk)| > 1, each pair of angles in A1(ui, uk) can
create a butterfly with a weight of 2 · w(A1(ui, uk)). If
|A1(ui, uk)| = 1, the only angle in A1(ui, uk) should match
each angle in A2(ui, uk), and the weight is w(A1(ui, uk))
+w(A2(ui, uk)). Consequently, in line 13 of Algorithm 2, the
weight of the current maximum weighted butterflies, wmax,
can be updated in real-time for optimization, as described in

Section V-B. Furthermore, in lines 16-19 of Algorithm 2, the
true maximum weighted butterflies set, SMB , can be created.

Lemma V.1. The time and space complexity of each trial in
Algorithm 2 are both O(min{

∑
u∈L d2(u),

∑
v∈R d2(v)} +

|SMB |), where d2(u) is the expected square of u’s degree.

Proof. The complexity of Lines 8-14 on the backbone graph is
O(

∑
v∈R deg2(v)), since there are O(deg2(v)) angles whose

middle vertex is v, and each angle will be added into A1

and A2 at most once. Same as Lemma IV.1, the degree
in a possible world is relatively lower. Then, the average
time complexity is expected of deg2(v), i.e., d2(v). Note
two disjoint parts are symmetrical [52], the time complex-
ity is O(min{

∑
u∈L d2(u),

∑
v∈R d2(v)}). In Lines 15-20,

only maximum weighted butterflies will be created, which
costs O(|SMB |). Therefore, the total time complexity is
O(min{

∑
u∈L d2(u),

∑
v∈R d2(v)}+|SMB |). The space com-

plexity is the same to save all angles and maximum weighted
butterflies.

In fact, with the optimization of Edge Ordering, Algorithm 2
requires handling fewer edges and significantly reduces the
actual execution time. The only issue is that d2(u) may not
seem intuitive to compute directly. An alternative is to use
the square of the expected degree of u, i.e., d̄2(u) = (d̄(u))2.
While this approximation might incur an additional cost, it’s
still negligible given the Edge Ordering pruning.

Lemma V.2. To achieve ϵ − δ approximation, the trial
number of Algorithm 2 should at least Nos ≥ (1/P (B)) ·
(4 ln(2/δ)/ϵ2).

Proof. Algorithm 2 directly estimates P (B), so let µ = P (B)
in Lemma IV.1, the lowerbound is (1/P (B)) · (4 ln(2/δ)/ϵ2).

VI. ORDERING-LISTING SAMPLING

The OS Method demonstrates high efficiency and achieves
a low time complexity in a single iteration. However, this
Monte-Carlo-based algorithm requires numerous trials to en-
sure accuracy. Our second method, called Ordering-Listing
Sampling (OLS), is specialized for multiple trials to avoid
sampling the whole network.

OLS involves an additional preparing phase to list some
candidate butterflies first, and then samples on these candidate
butterflies directly, ignoring the backbone network. Specifi-
cally, OLS can invoke OS for a few iterations to list some
candidate butterflies as a candidate set CMB , and then apply
some efficient sampling algorithms over CMB .

A. Ordering-Listing Sampling Framework

Figure 5 presents an example of the OLS framework. The
candidate maximum weighted butterflies set, CMB , of the
backbone graph contains at most 7 butterflies, which are sorted
by their weights. After obtaining the candidate set CMB ,
we can directly sample butterflies on CMB by the weight
order, instead of sampling the whole network. Upon finding

ଵ ଷ

ଵ ଶ

𝑤 = 10

ଶ ଷ

ଵ ଷ

𝑤 = 10

ଵ ଷ

ଵ ସ

𝑤 = 8

ଵ ଷ

ଶ ସ

𝑤 = 6

ଵ ଶ

ଵ ସ

𝑤 = 7

ଶ ଷ

ଵ ସ

𝑤 = 7

ଶ ଷ

ଷ ସ

𝑤 = 7

ଵ ଶ ଷ ସ

ଵ ଶ ଷ

(a) A possible world. Thick lines, thin
lines, and dash lines have weight 3, 2, 1,
respectively.

ଵ ଷ

ଵ ଶ

𝑤 = 10

ଶ ଷ

ଵ ଷ

𝑤 = 10

ଵ ଷ

ଵ ସ

𝑤 = 8

ଵ ଷ

ଶ ସ

𝑤 = 6

ଵ ଶ

ଵ ସ

𝑤 = 7

ଶ ଷ

ଵ ସ

𝑤 = 7

ଶ ଷ

ଷ ସ

𝑤 = 7

ଵ ଶ ଷ ସ

ଵ ଶ ଷ

(b) All 7 potential candidate butterflies.

Fig. 5: The backbone graph and candidate butterflies sorted by weight.

Algorithm 3: Ordering-Listing Sampling
Input: trial number Nos, Nls, an uncertain bipartite

weighted network G = (V = (L,R), E, p, w)
Output: the most probable maximum butterfly B

1 CMB ← ∅
2 for r = 1 to Nos do
3 SMB ← the maximum butterflies set by Algorithm 2
4 CMB ← CMB ∪ SMB

5 P (·)← ProbabilityEstimating(CMB , Nls)
6 return argmax

B
P (B)

a butterfly, other butterflies with the same weight should also
be sampled, and subsequent butterflies will be skipped.

The OLS method, as shown in Algorithm 3, consists of two
phases: the preparing phase (Lines 2-4) and the sampling phase
(Line 5). The preparing phase employs the OS method to list
some candidate butterflies. Unlike conventional methods that
require numerous trials and the accumulation of probabilities
for precision, OLS uses fewer trials to identify maximum
butterflies SMB and stores them in the candidate set CMB .
Then the sampling phase samples on a small candidate set
CMB with some efficient sampling algorithms.

In short, the preparing phase will filter possible butterflies
and the sampling phase is responsible for precise probabilities.

B. Preparing Phase

Instead of reporting the exact probability P (Bi) of each
butterfly Bi, the preparing phase only requires the existence
of each butterfly. This approximate method can retain high-
probabilities butterflies while ignoring other butterflies. Specif-
ically, if we run the OS method for more iterations, more
butterflies will be added to the candidate set. To make sure
that the target MPMB does not be filtered out, we have:

Lemma VI.1. Suppose B∗ is the true answer to the MPMB
problem, then with a high probability, B∗ ∈ CMB .

Algorithm 4: ProbabilityEstimating (Karp-Luby [48])
Input: the candidate set CMB , trial number Nkl

Output: the estimated probability of each butterfly P (·)
1 foreach Bi ∈ CMB do
2 Cnti ← 0
3 L(i)← the largest index that

L(i) < i,w(BL(i)) > w(Bi)
4 Si ←

∑
j∈[1,L(i)] Pr[E(Bj\Bi)]

5 for r = 1 to Nkl do
6 Sample j ∈ [1, L(i)] with probablity Pr[E(Bj\Bi)]

Si

7 Sample a possible world W such that Bj\Bi ⊆ EW

8 if ∀k < j,Bk\Bi ̸⊆ EW then
9 Cnti ← Cnti + 1

10 P (Bi)← (1− Cnti
Nkl
× Si)× Pr[E(Bi)]

11 return P (Bi) for all Bi ∈ CMB

Proof. In each trial of the preparing phase, a butterfly B is in
the set SMB if and only if B is the maximum butterfly in the
possible world. Therefore, Pr[B ∈ SMB] = P (B).

The preparing phase has Nos trials. As long as B ∈ SMB

holds once, the butterfly B will appear in the candidate set
CMB , where the probability is 1−(1−P (B))Nos . Even when
P (B) = 0.1 and Nls = 20, the probability is nearly 90%.

C. Sampling Phase

Now the probability estimating function only requires to
compute probabilities for candidate butterflies. We first sort
these candidate butterflies by the weight order and estimate
the probability. To achieve high precision with fewer sampling
trials, we introduce two efficient sampling algorithms, namely
Karp-Luby sampling and our optimized sampling.
Karp-Luby sampling [48], [12]. Algorithm 4 is the Karp-
Luby sampling algorithm. The KL sampling is developed
to estimate the probability that at least one event exists if
these events are not independent. If we directly summate the
probability of each event up, the result could be relatively
large since one possible world may contain multiple events.
The major idea of the KL sampling is to define the priority
that only one event can contribute to each possible world.

To make a butterfly Bi being maximum, (1) the butterfly
Bi should exist, and (2) no larger butterfly Bj(j ≤ L(i))
exists, where L(i) indicates the last butterfly with a larger
weight, i.e., ∀j ∈ [1, L(i)], w(Bj)>w(Bi). Therefore, the KL
sampling can be applied to estimate the opposite case that at
least one butterfly Bj(j ≤ L(i)) exists.

Suppose Bi exists, we only consider other edges Bj\Bi for
other butterflies Bj . At first in Line 4, we compute the total
summation probability Si. Then the KL sampling iteratively
chooses a possible world in Si that contains at least one
butterfly, saying Bj in Lines 6-7. Here the priority is defined
that only the butterfly with the minimum index can be counted.
Therefore, in Lines 8-9, we have to check whether another
butterfly with a lower index k exists. If not, Bj can contribute
to the result.

Then, we have the analyses of the time and space complex-
ity of Algorithm 4 in the following lemma:

Lemma VI.2. The time complexity of Algorithm 4 with Karp-
Luby sampling is O(Nkl · |CMB |2) and the space complexity
is O(|CMB |).

Proof. Each butterfly requires Nkl trials, where each trial costs
O(|CMB |) in the worst case. So the total time complexity with
Nkl trials is O(Nkl · |CMB |2). The KL sampling requires no
extra memory so the space complexity is O(|CMB |).

Optimized sampling. Algorithm 4 applies the Karp-Luby
algorithm to increase accuracy and reduce the trial number
for each butterfly. However, the sampling process between
butterflies is independent, thus every butterfly requires Nkl

trials.
Algorithm 5 is our optimized probability estimating method,

which samples butterflies by the weight order, and all butter-
flies share each trial. When a butterfly exists, the sampling
process will not terminate but save the weight wmax (Lines 8-
10), continuing sampling until the current butterfly weight is
less than wmax (Lines 5-6).

Lemma VI.3. The time complexity of Algorithm 5 with
our optimized sampling is O(Nop · |CMB |) and the space
complexity is O(|CMB |).

Proof. Algorithm 5 will enumerate at most O(|CMB |) edges
in each trial. Thus, the total time complexity using the opti-
mized sampling algorithm is O(Nop · |CMB |). The space com-
plexity is still O(|CMB |) with no extra memory required.

D. Trial Number Lowerbound

Next, we explain why Algorithm 5 is much more efficient
than Algorithm 4. To achieve the same approximation, two
sampling algorithms may require different trial numbers Nkl

and Nop. Therefore, we cannot directly compare their time
complexity.

Recalling that the trial lower-bound for Monte-Carlo-based
sampling is N ≥ (1/µ) · (4 ln(2/δ)/ϵ2). However, different
sampling processes will affect realistic trial numbers. Specifi-
cally, we have:

Lemma VI.4. Let µ and µ̂ is the target and the estimated
probablity of a butterfly Bi, i.e., µ = P (Bi). To achieve
ϵ− δ approximation using Algorithm 4 and Algorithm 5, i.e.,
Pr(|µ̂ − µ| > ϵµ) ≤ δ, the trial number lower-bound should
respectively be:

Nop ≥ (1/µ) · (4 ln(2/δ)/ϵ2)
Nkl ≥ Pr[E(Bi)]× Si ×

(
Pr[E(Bi)]

µ − 1
)
(1/µ) · (4 ln(2/δ)/ϵ2)

where Pr[E(Bi)] is the existing probability of the butterfly
Bi, and Si is as shown in Algorithm 4.

Proof. Our optimized sampling algorithm directly estimates
P (Bi), and thus Nop ≥ (1/µ) · (4 ln(2/δ)/ϵ2). We prove the
remaining part by analyzing the ratio of two trial numbers Nkl

and Nop.
Since Algorithm 4 estimates Cnti

Nkl
in Line 9 instead of

P (Bi), we have to convert the error and confidence. The

Algorithm 5: ProbabilityEstimating (optimized)
Input: the candidate set CMB , the trial number Nop

Output: the estimated probability of each butterfly P (·)
1 for r = 1 to Nop do
2 SMB ← ∅
3 wmax ← 0
4 foreach Bk(ui, uj , vi, vj) ∈ CMB do
5 if w(Bk) < wmax then
6 break
7 sampling each edge in Bk if not sampled previously
8 if Bk exists then
9 SMB ← SMB ∪ {Bk}

10 wmax ← w(Bk)

11 foreach B ∈ SMB do
12 P (B)← P (B) + 1/Nop

13 return P (Bi) for all Bi ∈ CMB

following equation shows the transform between Cnt
Nkl

and
P (Bi):

P (Bi) =
(
1− Cnti

Nkl
× Si

)
× Pr[E(Bi)]

Suppose Algorithm 4 satisfies the ϵ − δ condition on Cnti
Nkl

,
the result P (Bi) is ϵ · Cnti

Nkl
× Si × Pr[E(Bi)]/P (Bi) − δ

approximation. Thus, the ratio of trial numbers of the two
methods is:

Nkl

Nop
=

µopϵ
2
op

µklϵ2kl
=

P (Bi) · ϵ2 · (Cnti
Nkl

× Si × Pr[E(Bi)])
2

P (Bi)2 · Cnti
Nkl

· ϵ2

=
Cnti
Nkl

· S2
i · Pr[E(Bi)]

2

P (Bi)

= Pr[E(Bi)]× Si ×
(
Pr[E(Bi)]

P (Bi)
− 1

)
Here P (Bi) is the target estimated probability and can be
replaced by µ. So we have:

Nkl
Nop

= Pr[E(Bi)]× Si ×
(

Pr[E(Bi)]
µ

− 1
)

(8)

With Nop ≥ (1/µ) · (4 ln(2/δ)/ϵ2), the lemma is proved.

Using Lemma VI.4, two sampling algorithms can precisely
set a unique trial number for each butterfly. Moreover, we can
analyze the time complexity to report the result with the same
ϵ− δ approximation. Considering the time complexity of two
methods presented in Lemma VI.2 and Lemma VI.3, when the
time complexities of the two methods are the same, we have:

Nkl

Nop
=

1

O(|CMB |)
(9)

Considering that |CMB | and Si could be very large, Equation 8
is generally exceed 1

O(|CMB |) , indicating the huge advantage
of our optimized sampling algorithm in Algorithm 5.

E. Approximation Guarantees

A remaining problem is that the preparing phase may
miss some butterflies with low probabilities. These butterflies
themselves might not be the answer but could affect the
computation of other candidate butterflies. In the following, we
will show that the approximation error of P (Bi) is bounded.

Lemma VI.5. Suppose Algorithm 3 returns the estimated
probability P̂ (Bi) and its exact probability is P (Bi), the abso-
lute error on estimating P (Bi) from skipping some butterflies
in the preparing phase is bounded, i.e.,

P̂ (Bi)− P (Bi) ≤
∑

1≤j≤L(i)
Bj ̸∈CMB

P (Bj)

where L(i) indicates the largest index: w(BL(i)) > w(Bi).

Proof. To make a butterfly Bi being maximum, (1) the butter-
fly Bi should exists, and (2) no larger buttefly Bj(j ≤ L(i))
exists:

P (Bi) = Pr
[(⋂L(i)

j=1 E(Bj)
)
∩ E(Bi)

]
Considering edges that are both in Bi and Bj , we have:

E(Bj) ∩ E(Bi) = E(Bj\Bi) ∩ E(Bi)

Now E(Bj\Bi) and E(Bi) are independent. Hence:

P (Bi) = Pr[E(Bi)] · Pr

L(i)⋂
j=1

E(Bj\Bi)

= Pr[E(Bi)] ·

1− Pr

L(i)⋃
j=1

E(Bj\Bi)

Let B∗

j = Bj\Bi, the following transformation holds:
L(i)⋃
j=1

E(B∗
j)

=E(B∗
1) ∪

(
E(B∗

1) ∩ E(B∗
2)
)
∪
(
E(B∗

1) ∩ E(B∗
2) ∩ E(B∗

3)
)
...

=

L(i)⋃
j=1

(
j−1⋂
t=1

E(B∗
t) ∩ E(B∗

j)

)

Since all ∩j−1
t=1E(B∗

t)∩E(B∗
j) are independent, the principle

of additivity is applied:

P (Bi) = Pr[E(Bi)] ·

1−
L(i)∑
j=1

Pr

[
j−1⋂
t=1

E(B∗
t) ∩ E(B∗

j)

]
The estimated probability, P̂ (B), is similar except missing

some butterflies out of the candidate set:

P̂ (Bi) = Pr[E(Bi)] ·

1−
∑

1≤j≤L(i)
Bj∈C

Pr

 ⋂
1≤t≤j−1

Bt∈C

E(B∗
t) ∩ E(B∗

j)

≤ Pr[E(Bi)] ·

1−
∑

1≤j≤L(i)
Bj∈C

Pr

[
j−1⋂
t=1

E(B∗
t) ∩ E(B∗

j)

]
Therefore, we have:

P̂ (Bi)− P (Bi) ≤ Pr[E(Bi)] ·

 ∑
1≤j≤L(i)

Bj ̸∈C

Pr

[
j−1⋂
t=1

E(B∗
t) ∩ E(B∗

j)

]
=

∑
1≤j≤L(i)
Bj ̸∈CMB

Pr

[
j−1⋂
t=1

E(B∗
t) ∩ E(B∗

j) ∩ E(Bi)

]

≤
∑

1≤j≤L(i)
Bj ̸∈CMB

Pr

L(j)⋂
t=1

E(Bt) ∩ E(Bj) ∩ E(Bi)

Omitting E(Bi), the approximation error is bounded by:
P̂ (Bi)− P (Bi) ≤

∑
1≤j≤L(i)
Bj ̸∈CMB

P (Bj)

To explain it, the approximation error happens when Bj

could have been a maximum butterfly but is missed in the
candidate set CMB . Followed by the Lemma VI.2, a missing
butterfly Bj in the preparing phase may have a small P (Bj)
with a high probability. Moreover, the derivation includes
many inequality scales, thus the real error can be much lower.

VII. MULTIPLE MPMB SOLUTIONS

To address the limitation that MPMB only return one
individual butterfly and enhance the scalability in large-scale
network, we propose an extension to the MPMB problem: top-
k MPMB problem. This approach allows for the detection of
multiple significant butterflies, providing a more comprehen-
sive view of important areas.

For MC-VP and OS: After estimating the probability P (Bi)
for all butterflies Bi, instead of selecting only the maximum,
we can sort the butterflies SMB in descending order of
probability and select the top-k butterflies.

For OLS: We can apply a similar operation to the butterflies
in the candidate set CMB . By sorting all candidates butterflies,
we can identify the top-k butterflies in the candidate set. This
operation is supported by Lemma VI.1, which demonstrates
that high-probability butterflies are likely to be included in
the candidate set.

VIII. EXPERIMENT

In this section, we evaluate the efficiency of the proposed
methods, OS and OLS, in comparison to the baseline method,
Monte-Carlo sampling with the BFC-VP algorithm (MC-VP).
We also implement the Karp-Luby algorithm on OLS, referred
to as OLS-KL. All methods are implemented in C++17
and compiled using -O3 optimization. All experiments are
conducted on an Intel Core i5-13500HX CPU @ 2.5GHz with
32 GB of memory.

The experiment includes two main aspects, efficiency and
effectiveness. For efficiency, we evaluate two major metrics,
i.e., the executing time and the sampling trial numbers. For ef-
fectiveness, we present the convergence trend with increasing
trial numbers to verify our proposed lower bound.

A. Datasets

Table III provides details for the four datasets used in
various experiments. The ABIDE [34] dataset presents brain
network data, with vertices representing different Regions of
Interest (ROIs) and edges indicating ROI connections. Edge
weight and probability denote the distance and correlation
between two ROIs, respectively.

MovieLens [53] and Jester [54] are rating datasets. Here,
the left vertices represent users and the right vertices represent
entities (movies or jokes). The edge weight signifies the rating
point, while edge probability shows the reliability of this

TABLE III: Dataset Details.
Datasets |E| |L| |R| weight probability
ABIDE 3,364 58 58 physical distance correlation

MovieLens 100,836 610 9,724 rating reliability
Jester 4,136,360 100 73,421 rating reliability

Protein 39,471,870 186,773 186,772 interaction Normal(0.5,0.2)

0.05 0.1 0.15 0.2 0.25
MPMB Probability P(Bi)

0.3

0.4

0.5

0.6

0.7

Ex
ist

in
g

 P
ro

ba
bi

lit
y

 P
r[E

(B
i)]

1.500 0.600 0.300 0.150 0.060

2.800 1.200 0.667 0.400 0.240

4.500 2.000 1.167 0.750 0.500

6.600 3.000 1.800 1.200 0.840

9.100 4.200 2.567 1.750 1.260

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fig. 6: Matrix of trial number ratio Nkl/Nop when Si = 1 computed
by Equation 8.

rating, defined as the relative difference between the user rating
and the average rating.

Protein1 is a dataset where vertices are proteins and edges
are interaction strength between two proteins. As the original
network is a deterministic non-bipartite graph, we prepro-
cessed this dataset to randomly generate probabilities with
normal distribution and divided vertices equally by their odd
and even IDs.

B. Parameters

The trial number N should be carefully chosen with the
same accuracy. For MC-VP and OS, we set Nmc = Nos =
2 × 104 by default suppose µ = 0.05 and ϵ = δ = 0.1 in
Theorem IV.1, i.e., the probability of the relative error on
P (B) = 0.05 exceeding 10% is no more than 10%. For OLS-
KL and OLS, we set Nos = 100 for the preparing phase
to make sure that the missing probability of a butterfly with
P (B) = 0.05 is no more than 0.5%. As for the sampling
phase, OLS-KL follows Equation 8 to dynamically compute
the trial number Nkl for each butterfly, while OLS also has
Nop = 2× 104.

The Karp-Luby algorithm uses dynamic trial numbers com-
puted during the sampling process. Figure 6 shows some gen-
eral combinations of MPMB probability P (Bi) and exsiting
probability Pr[E(Bi)] when Si = 1. A larger ratio (or darker
block) means more trials for the Karp-Luby algorithm. Since
(1) Si is incremental and very likely to exceed 1 and (2) this
ratio has to compare with 1

CMB
, which is much lower than

1, our method show a significant advantage, especially for a
precise result and a large candidate set.

TABLE IV: Trial numbers of four methods in different phases.
Sampling Methods Preparing Phase Sampling Phase

MC-VP - 20,000
OS - 20,000

OLS-KL 100 dynamic
OLS 100 20,000

1Available at https://cn.string-db.org/

ABIDE MovieLens Jester Protein
10 2

10 1

100

101

102

103

104

Ov
er

all
 E

xe
cu

tin
g

Ti
m

e (
se

c)

MC-VP OS OLS-KL OLS

Fig. 7: Overall executing time on four datasets.

C. Sampling Efficiency

Overall executing time. The first experiment is about sam-
pling efficiency. All methods apply the default parameter
setting declared in Section VIII-B and the time limitation is
14,400 sec (4 hours). Figure 7 presents the overall executing
time for MC-VP, OS, OLS-KL, and OLS methods on four
datasets. MC-VP is too time-consuming and cannot finish the
process on two larger datasets within 4 hours so we omit it in
further experiments.

The result shows that both OS and OLS methods obtain sig-
nificant improvement, while the baseline method. Compared
with MC-VP, OS has at least 103x speedup due to the pruning
optimizations. Compared with OS, OLS-KL and OLS methods
are more efficient with at most around 180x speedup.

The Comparison between OLS-KL and OLS is twofold.
On smaller datasets (ABIDE, MovieLens, and Jester), our
optimized probability estimating process is more efficient and
requires lower trial numbers (discussed in Section VI-D and
visualized in Figure 6), achieving over 8x speedup. However,
this leading advantage is almost negligible on the MouseGene
dataset.
Varying N in the sampling phase. Figure 8 further presents
the preparing time (when N=0%, only for OLS-KL and OLS)
and sampling time (N varying in 25%, 50%, 75%, 100%). For
two smaller datasets (ABIDE and MovieLens), the preparing
phase is fast, while in two larger dataset (Jester and Protein),
the preparing time is the dominant cost. As a result, OLS-
KL/OLS is up to 180x faster than OS especially in Jester
and Protein, since OLS-KL and OLS only require only 1/200
trials in the preparing phase. Even in ABIDE and MovieLens,
OLS-KL and OLS still perform better than OS due to the
simple sampling process. Compared to OLS-KL, OLS with our
optimized sampling algorithm further achieves around 3 ∼ 8x
speedup, which is quite evident in ABIDE and MovieLens.
Scalability. We also evaluate the scalability of these algo-
rithms by randomly choosing 25%, 50%, 75%, 100% of ver-
tices to form a new dataset. Figure 9 shows a better scalability
of OS, whose time complexity is directly related to degrees.

0% 25% 50% 75% 100%
Sampling Phase Trial Number

10 3

10 2

10 1

100
Ti

m
e (

se
co

nd
)

(a) ABIDE

OS OLS-KL OLS

0% 25% 50% 75% 100%
Sampling Phase Trial Number

10 2

10 1

100

Ti
m

e (
se

co
nd

)

(b) MovieLens

0% 25% 50% 75% 100%
Sampling Phase Trial Number

100

101

102

Ti
m

e (
se

co
nd

)

(c) Jester

0% 25% 50% 75% 100%
Sampling Phase Trial Number

101

102

103

Ti
m

e (
se

co
nd

)

(d) Protein

Fig. 8: Specific executing time with different trial numbers.

25% 50% 75% 100%
Dataset Scale

10 1

100

Ti
m

e (
se

co
nd

)

(a) ABIDE

OS OLS-KL OLS

25% 50% 75% 100%
Dataset Scale

10 2

10 1

100

101

Ti
m

e (
se

co
nd

)

(b) MovieLens

25% 50% 75% 100%
Dataset Scale

10 1

100

101

102

103

Ti
m

e (
se

co
nd

)

(c) Jester

25% 50% 75% 100%
Dataset Scale

100

102

Ti
m

e (
se

co
nd

)

(d) Protein

Fig. 9: Specific executing time with different dataset scales.

On the contrary, the sampling phase in OLS-KL and OLS has a
fixed size of the candidate set so the scalability in ABIDE and
MovieLens is not evident. However, the preparing phase has
a dominant time cost on Jester and Protein datasets, showing
a similar scalability compared with OS.
Trial numbers. Figure 10 visualizes the trial number for each
candidate butterfly in detail. Specifically, each bar indicates a
candidate butterfly and the height is the trial number ratio. The
ratio value Nkl/Nop is computed by Equation 8 and µ = 0.1.
In general, the average ratio changes from 0.1 to 2, which is
consistent with Figure 6.

This ratio requires to be compared with 1
CMB

according
to Equation 9. Therefore, we also use a red line to indicate
the value of 1

CMB
, where most bars significantly exceed this

balanced value. Though these theoretical analyses are just an
upper bound and the actual sampling process is faster with
some early terminations, this experiment can still confirm that
our optimized sampling method is more efficient.

In addition, Figure 10(c) shows many same ratios. The

0 10 20 30 40 50 60
Maximum Butterfly Candidate Set

0.0

0.1

0.2

Ra
tio

 (N
kl

/N
op

) (a) ABIDE

0 2 4 6 8 10 12
Maximum Butterfly Candidate Set

0

2

4

Ra
tio

 (N
kl

/N
op

) (b) MovieLens

0 20 40 60 80 100
Maximum Butterfly Candidate Set

0

1

Ra
tio

 (N
kl

/N
op

) (c) Jester

0 10 20 30
Maximum Butterfly Candidate Set

0.0

0.1

0.2

Ra
tio

 (N
kl

/N
op

) (d) Protein

Fig. 10: The ratio of the required trial numbers in the Karp-Luby
algorithm and ours, i.e., Nkl/Nop. The red line indicates balancing
value 1/CMB .

reason is that some people give the same rating to one joker,
leading to many butterflies with the same weights and proba-
bilities. In fact, this experiment also confirms Lemma VI.5
especially when some candidate butterflies have the same
weight.

D. Trials Effectiveness

To examine the trial number declared in Section VIII-B in
experiments, we trace the probability convergence trend of a
butterfly with P (Bi)≈0.05 using all three methods.
Sampling Phase Trial Number. Figure 11 shows the result
with increasing trial numbers in the sampling phase with twice
the trial number. The strip zone indicates the error bound,
whose width is twice the relative error i.e., 2ϵ = 0.01.

The probability trends of all three methods have some fluc-
tuation only in the initial 50% trials and then start convergence
until becoming completely stable after 100% trials (or even
earlier), which can be bounded into 2ϵ error zone. Although
we cannot find the exact MPMB probability, we can still imply
the correctness of three different sampling methods, since the
basic OS method has a full theoretical guarantee.

Comparing OS and OLS, the latter method misses some
butterflies with low MPMB probabilities in the candidate set.
The result verifies that the 100 trials for the ordering phase
are enough, and the error given in Lemma VI.5 will not affect
the final result too much.

Comparing OLS and OLS-KL, the result verifies the suf-
ficiency of the trial number lower-bound of the Karp-Luby

0% 50% 100% 150% 200%
Sampling Phase Trial Number

0.04
0.05
0.06
0.07
0.08

M
PM

B
Pr

ob
ab

ili
ty

 P
(B

) (a) ABIDE
OS
OLS-KL
OLS

0% 50% 100% 150% 200%
Sampling Phase Trial Number

0.04
0.05
0.06
0.07
0.08

M
PM

B
Pr

ob
ab

ili
ty

 P
(B

) (b) MovieLens
OS
OLS-KL
OLS

0% 50% 100% 150% 200%
Sampling Phase Trial Number

0.04
0.05
0.06
0.07
0.08

M
PM

B
Pr

ob
ab

ili
ty

 P
(B

) (c) Jester
OS
OLS-KL
OLS

0% 50% 100% 150% 200%
Sampling Phase Trial Number

0.04
0.05
0.06
0.07
0.08

M
PM

B
Pr

ob
ab

ili
ty

 P
(B

) (d) Protein
OS
OLS-KL
OLS

Fig. 11: MPMB probability convergence trend with twice the trial
number of the listing phase over four datasets.

algorithm shown in Lemma VI.4, which means the above
comparison between OLS and OLS-KL is effective since they
have the same approximation guarantee with the trial number.
Preparing Phase Trial Number. Moreover, we want to check
whether the trial number in the preparing phase is enough.
Figure 12 plots the result also with twice the trial number
and a 2ϵ error zone. Note that each experiment is conducted
independently so the trend is not convergent but fluctuant.

Initially, the probabilities is either zero (i.e., not included
in the candidate set) or too large (i.e., the candidate set is
too small). After around 50% trials, the probabilities start to
stable and almost within the error zone, which means a small
number of trials is sufficient to find candidate butterflies.

E. Memory Consumption

Figure 13 presents the memory usage situation of four
methods, MC-VP, OS, OLS-KL, and OLS. In a smaller dataset
ABIDE, few butterflies exist so all four methods use similar
memory to save the network information. While the scale
of the network becomes larger, the number of angles and
butterflies that are required to be saved is also increasing.
However, OS, OLS-KL, and OLS all apply optimizations
mentioned in Section V to ignore some worse solutions. As
a result, the difference between these three methods is not
notable since the extra space is far less than the network
itself, while the MC-VP method requires another 50% memory
consumption to save all temporary information.

F. Experimental Results Summary

In summary, the OS method method surpasses the base-
line method by a factor of 103, demonstrating a significant
improvement in efficiency. The OLS method delivers an ad-
ditional speedup of 180x compared to the OS method. The
sampling technique proposed in the OLS method is highly
efficient, necessitating fewer trials and thus outperforming the
widely-used Karp-Luby algorithm with up to 8x speedup,
given the same precision.

In terms of effectiveness, all experimental results start to
converge before reaching half the theoretical trial number,

0% 50% 100% 150% 200%
Preparing Phase Trial Number

0.04
0.05
0.06
0.07
0.08

M
PM

B
Pr

ob
ab

ili
ty

 P
(B

) (a) ABIDE
OLS-KL
OLS

0% 50% 100% 150% 200%
Preparing Phase Trial Number

0.04
0.05
0.06
0.07
0.08

M
PM

B
Pr

ob
ab

ili
ty

 P
(B

) (b) MovieLens
OLS-KL
OLS

0% 50% 100% 150% 200%
Preparing Phase Trial Number

0.04
0.05
0.06
0.07
0.08

M
PM

B
Pr

ob
ab

ili
ty

 P
(B

) (c) Jester
OLS-KL
OLS

0% 50% 100% 150% 200%
Preparing Phase Trial Number

0.04
0.05
0.06
0.07
0.08

M
PM

B
Pr

ob
ab

ili
ty

 P
(B

) (d) Protein
OLS-KL
OLS

Fig. 12: MPMB probability trend with twice the trial number of the
ordering phase over four datasets.

ABIDE MovieLens Jester Protein
100

101

102

103

M
em

or
y

(M
B)

MC-VP OS OLS-KL OLS

Fig. 13: Memory consumption on four datasets.

thereby substantiating our theoretical trial numbers as ade-
quate. Additionally, the results from all methods are very close
and bounded in an acceptable error, showing the correctness
of our optimized sampling process.

The peak memory usage is approximating 2GB, wherein the
majority of memory is allocated for the original network and
the index size remains tiny.

IX. CONCLUSION

In this paper, we focus on uncertain butterflies on the
uncertain bipartite network and introduce the Most Probable
Maximum Weighted Butterfly (MPMB) problem. We prove
the NP-Hardness of searching for MPMBs and introduced
two methods: Ordering Sampling (OS) and Ordering-Listing
Sampling (OLS). The OS method involves randomly sampling
possible worlds to search for MPMBs, while the OLS method
first use OS to generate candidate MPMBs initially, and
then calculates MPMB probabilities over the relatively small
candidate set. We present theoretical trial number bounds and
approximation guarantees to meet various precision require-
ments. Our experimental results confirmed the efficiency and
effectiveness of our methods.

ACKNOWLEDGMENT

Peng Cheng is supported by NSFC under Grant No.
62102149. Long Yuan is supported by NSFC under Grant No.
62472225. Xuemin Lin is supported by NSFC U2241211 and
U20B2046. Corresponding Author: Peng Cheng.

REFERENCES

[1] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi, “Uncertain graph
processing through representative instances,” ACM Transactions on
Database Systems (TODS), vol. 40, no. 3, pp. 1–39, 2015.

[2] A. Khan and L. Chen, “On uncertain graphs modeling and queries,”
Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 2042–2043,
2015.

[3] A. Khan, Y. Ye, L. Chen, and H. Jagadish, On uncertain graphs.
Springer, 2018.

[4] X. Ke, A. Khan, M. Al Hasan, and R. Rezvansangsari, “Reliability
maximization in uncertain graphs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 34, no. 2, pp. 894–913, 2020.

[5] J. Tang, L. Fu, S. Liang, F. Long, L. Zhou, X. Wang, and C. Zhou,
“Flowercast: Efficient time-sensitive multicast in wireless sensor net-
works with link uncertainty,” ACM Transactions on Sensor Networks,
vol. 20, no. 1, pp. 1–32, 2023.

[6] S. Yang and F. A. Kuipers, “Traffic uncertainty models in network
planning,” IEEE Communications Magazine, vol. 52, no. 2, pp. 172–
177, 2014.

[7] M. Hua and J. Pei, “Probabilistic path queries in road networks:
traffic uncertainty aware path selection,” in Proceedings of the 13th
International Conference on Extending Database Technology, pp. 347–
358, 2010.

[8] X. Lian and L. Chen, “Trip planner over probabilistic time-dependent
road networks,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 26, no. 8, pp. 2058–2071, 2013.

[9] B. Y. Chen, W. H. Lam, A. Sumalee, Q. Li, H. Shao, and Z. Fang,
“Finding reliable shortest paths in road networks under uncertainty,”
Networks and spatial economics, vol. 13, pp. 123–148, 2013.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web, pp. 285–295, 2001.

[11] A. Khan, F. Bonchi, F. Gullo, and A. Nufer, “Conditional reliability
in uncertain graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 11, pp. 2078–2092, 2018.

[12] A. Saha, R. Brokkelkamp, Y. Velaj, A. Khan, and F. Bonchi, “Shortest
paths and centrality in uncertain networks,” Proceedings of the VLDB
Endowment, vol. 14, no. 7, pp. 1188–1201, 2021.

[13] R.-H. Li, Q. Dai, G. Wang, Z. Ming, L. Qin, and J. X. Yu, “Improved
algorithms for maximal clique search in uncertain networks,” in 2019
IEEE 35th International Conference on Data Engineering (ICDE),
pp. 1178–1189, IEEE, 2019.

[14] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Mining maximal cliques
from an uncertain graph,” in 2015 IEEE 31st international conference
on data engineering, pp. 243–254, IEEE, 2015.

[15] J. Niedermayer, A. Züfle, T. Emrich, M. Renz, N. Mamoulis, L. Chen,
and H.-P. Kriegel, “Probabilistic nearest neighbor queries on uncertain
moving object trajectories,” arXiv preprint arXiv:1305.3407, 2013.

[16] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest neighbors
in uncertain graphs,” Proceedings of the VLDB Endowment, vol. 3, no. 1-
2, pp. 997–1008, 2010.

[17] J. Wang, A. W.-C. Fu, and J. Cheng, “Rectangle counting in large
bipartite graphs,” in 2014 IEEE International Congress on Big Data,
pp. 17–24, IEEE, 2014.

[18] Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker, E. J. Chesler,
and M. A. Langston, “On finding bicliques in bipartite graphs: a novel
algorithm and its application to the integration of diverse biological data
types,” BMC bioinformatics, vol. 15, pp. 1–18, 2014.

[19] Q. Yu, Y. Du, J. Chen, J. Sui, T. Adalē, G. D. Pearlson, and V. D.
Calhoun, “Application of graph theory to assess static and dynamic brain
connectivity: Approaches for building brain graphs,” Proceedings of the
IEEE, vol. 106, no. 5, pp. 886–906, 2018.

[20] Q. Yu, J. Chen, Y. Du, J. Sui, E. Damaraju, J. A. Turner, T. G. van
Erp, F. Macciardi, A. Belger, J. M. Ford, et al., “A method for building
a genome-connectome bipartite graph model,” Journal of neuroscience
methods, vol. 320, pp. 64–71, 2019.

[21] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao, “Task assignment
on multi-skill oriented spatial crowdsourcing,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 8, pp. 2201–2215, 2016.

[22] G. Ye, Y. Zhao, X. Chen, and K. Zheng, “Task allocation with geo-
graphic partition in spatial crowdsourcing,” in Proceedings of the 30th
ACM International Conference on Information & Knowledge Manage-
ment, pp. 2404–2413, 2021.

[23] Y. Yang, Y. Cheng, Y. Yang, Y. Yuan, and G. Wang, “Batch-based
cooperative task assignment in spatial crowdsourcing,” in 2023 IEEE
39th International Conference on Data Engineering (ICDE), pp. 1180–
1192, IEEE, 2023.

[24] X. Cai, X. Ke, K. Wang, L. Chen, T. Zhang, Q. Liu, and Y. Gao,
“Efficient temporal butterfly counting and enumeration on temporal
bipartite graphs,” arXiv preprint arXiv:2306.00893, 2023.

[25] X. Li and H. Chen, “Recommendation as link prediction in bipartite
graphs: A graph kernel-based machine learning approach,” Decision
Support Systems, vol. 54, no. 2, pp. 880–890, 2013.

[26] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering tech-
niques,” Advances in artificial intelligence, vol. 2009, no. 1, p. 421425,
2009.

[27] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” in Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pp. 241–250, 2000.

[28] C. Maier and D. Simovici, “Bipartite graphs and recommendation
systems,” Journal of Advances in Information Technology-in print, 2022.

[29] C. Maier and D. Simovici, “On biclique connectivity in bipartite graphs
and recommendation systems,” in Proceedings of the 2021 5th Interna-
tional Conference on Information System and Data Mining, pp. 151–156,
2021.

[30] J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert, “A new approach to
collaborative filtering: Operator estimation with spectral regularization.,”
Journal of Machine Learning Research, vol. 10, no. 3, 2009.

[31] W. Pan, E. Xiang, and Q. Yang, “Transfer learning in collaborative
filtering with uncertain ratings,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 26, pp. 662–668, 2012.

[32] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou,
“Recommender systems,” Physics reports, vol. 519, no. 1, pp. 1–49,
2012.

[33] E. T. Rolls, C.-C. Huang, C.-P. Lin, J. Feng, and M. Joliot, “Automated
anatomical labelling atlas 3,” Neuroimage, vol. 206, p. 116189, 2020.

[34] A. Di Martino, C.-G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts,
J. S. Anderson, M. Assaf, S. Y. Bookheimer, M. Dapretto, et al., “The
autism brain imaging data exchange: towards a large-scale evaluation of
the intrinsic brain architecture in autism,” Molecular psychiatry, vol. 19,
no. 6, pp. 659–667, 2014.

[35] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the
American statistical association, vol. 44, no. 247, pp. 335–341, 1949.

[36] R. M. Karp and M. Luby, “Monte-carlo algorithms for enumeration
and reliability problems,” in 24th Annual Symposium on Foundations
of Computer Science (sfcs 1983), pp. 56–64, IEEE Computer Society,
1983.

[37] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Enumeration of maximal
cliques from an uncertain graph,” IEEE Transactions on Knowledge and
Data Engineering, vol. 29, no. 3, pp. 543–555, 2016.

[38] Q. Dai, R.-H. Li, M. Liao, H. Chen, and G. Wang, “Fast maximal
clique enumeration on uncertain graphs: A pivot-based approach,” in
Proceedings of the 2022 International Conference on Management of
Data, pp. 2034–2047, 2022.

[39] J. Wang, J. Yang, Z. Ma, C. Zhang, S. Yang, and W. Zhang, “Efficient
maximal biclique enumeration on large uncertain bipartite graphs,” IEEE
Transactions on Knowledge and Data Engineering, 2023.

[40] X. Li, K. Hao, Z. Yang, X. Cao, and W. Zhang, “Hop-constrained s-
t simple path enumeration in large uncertain graphs,” in Australasian
Database Conference, pp. 115–127, Springer, 2022.

[41] A. Zhou, Y. Wang, and L. Chen, “Butterfly counting on uncertain
bipartite graphs,” Proceedings of the VLDB Endowment, vol. 15, no. 2,
pp. 211–223, 2021.

[42] A. Zhou, Y. Wang, and L. Chen, “Butterfly counting and bitruss de-
composition on uncertain bipartite graphs,” The VLDB Journal, vol. 32,
no. 5, pp. 1013–1036, 2023.

[43] Y. Chen, X. Zhao, X. Lin, Y. Wang, and D. Guo, “Efficient mining of
frequent patterns on uncertain graphs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 31, no. 2, pp. 287–300, 2018.

[44] C. Ma, R. Cheng, L. V. Lakshmanan, T. Grubenmann, Y. Fang, and
X. Li, “Linc: a motif counting algorithm for uncertain graphs,” Pro-
ceedings of the VLDB Endowment, vol. 13, no. 2, pp. 155–168, 2019.

[45] N. H. Tran, K. P. Choi, and L. Zhang, “Counting motifs in the human
interactome,” Nature communications, vol. 4, no. 1, p. 2241, 2013.

[46] A. Todor, A. Dobra, and T. Kahveci, “Counting motifs in probabilis-
tic biological networks,” in Proceedings of the 6th ACM Conference

on Bioinformatics, Computational Biology and Health Informatics,
pp. 116–125, 2015.

[47] A. Saha, X. Ke, A. Khan, and C. Long, “Most probable densest
subgraphs,” in 2023 IEEE 39th International Conference on Data
Engineering (ICDE), pp. 1447–1460, IEEE, 2023.

[48] R. M. Karp and M. G. Luby, A new monte-carlo method for estimating
the failure probability of an n-component system. University of Califor-
nia at Berkeley, 1983.

[49] L. Zou, P. Peng, and D. Zhao, “Top-k possible shortest path query over a
large uncertain graph,” in International Conference on Web Information
Systems Engineering, pp. 72–86, Springer, 2011.

[50] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Vertex priority based
butterfly counting for large-scale bipartite networks.,” PVLDB, 2019.

[51] R. M. Karp, M. Luby, and N. Madras, “Monte-carlo approximation
algorithms for enumeration problems,” Journal of algorithms, vol. 10,
no. 3, pp. 429–448, 1989.

[52] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura, “Butterfly counting
in bipartite networks,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pp. 2150–2159, 2018.

[53] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[54] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A
constant time collaborative filtering algorithm,” information retrieval,
vol. 4, pp. 133–151, 2001.

