
HINSCAN: Efficient Structural Graph Clustering
over Heterogeneous Information Networks

Long Yuan§, Xiaotong Sun§, Zi Chen\∗, Xuemin Lin‡, Peng Cheng†, Longbin Lai◦
§Nanjing University of Science and Technology, China, \Nanjing University of Aeronautics and Astronautics, China,

‡Shanghai Jiao Tong University, China, †East China Normal University, China,◦Alibaba Group, China
§{longyuan,xiaotong}@njust.edu.cn; \zichen@nuaa.edu.cn; ‡xuemin.lin@gmail.com;

†pcheng@sei.ecnu.edu.cn; ◦longbin.lailb@alibaba-inc.com

Abstract—Structural graph clustering (SCAN) is one of the
most popular graph clustering paradigms, and has attracted
plenty of attention recently. Existing solutions assume that the
input graphs is homogeneous, i.e., the vertices are of the same
type. However, in many real applications, such as bibliographic
networks and knowledge graphs, the input graphs is heteroge-
neous information networks which consist of multi-typed and
interconnected objects, which makes SCAN cannot be applied to
cluster. Therefore, in this paper, we study the SCAN problem
over heterogeneous information networks. Based on the concept
of meta-path, we propose two new structural graph clustering
models first. Following these two new models, we design new
algorithms to support the efficient clustering of a heterogeneous
information network. We conduct extensive experiments on six
real heterogeneous information networks, and the results demon-
strate the effectiveness of our new models and the efficiency of
our proposed clustering algorithms.

I. INTRODUCTION

Graph clustering aims to identify clusters of “similar”
vertices that are densely connected within the group and
sparsely connected to those outside [1]. This analytical tech-
nique finds application across a broad spectrum of fields,
encompassing, such as social and biological network analysis
[2], load balancing in distributed systems [3], natural language
processing [4, 5], and recommendation systems [6]. Struc-
tural Clustering Algorithm for Networks (SCAN) is one of
the well-known graph clustering methods. Unlike traditional
graph clustering methods that enforce non-overlapping cluster
boundaries, SCAN allows for the possibility of a vertex being
affiliated with multiple clusters. Moreover, it distinguishes be-
tween hub vertices—those acting as bridges between disparate
clusters—and outlier vertices, which demonstrate weak ties
to any cluster. SCAN has proven effective in clustering both
biological data and social media data [5, 7–9].

While the effectiveness of SCAN in detecting hubs, outliers,
and clusters has been demonstrated in various applications,
SCAN assumes that the input graphs are homogeneous. How-
ever, many real-world graphs are heterogeneous information
networks (HINs), such as bibliographic networks, social media
networks, and knowledge network [10–12], which comprise
multiple types of objects and links representing different
relationships. Fig. 1 (a) illustrates an HIN derived from DBLP

∗ Zi Chen is the corresponding author.

Fig. 1. DBLP Bibliographic Network
network, delineating the interrelations among various types,
including author, paper, venue, and topic. Specifically, it
encompasses seven distinct authors labeled a1 to a7, five
papers labeled p1 to p5, one topic labeled t1, and one venue
labeled v1. The directional connections signify the semantic
associations between these entities. For instance, authors a1
and a2 co-authored paper p1, which is centered around topic
t1. Fig. 1 (b) shows the network schema which defines the
types of entities (such as authors, papers, venues, and topics)
and the allowed relationships between them, providing a
structural blueprint for the network [10]. Since existing SCAN
methods mainly focus on homogeneous graphs, they are not
applicable to HINs. Consequently, in this paper, we study the
SCAN problem over HINs and aim to devise a new structural
clustering method to cluster the vertices of the same type
within a given HIN effectively and efficiently.

Challenges. However, designing a new structural clustering
model that effectively captures the unique characteristics of
HINs while preserving the clustering efficacy of SCAN in
identifying diverse vertex roles is challenging. Revisiting
the SCAN model, its success is rooted in a rigorous set
of definitions that determine the roles of vertices. Given a
homogeneous graph G, SCAN deems two vertices connected
by an edge structurally similar when the number of their
common neighbors normalized by the geometric mean of their
degrees (structural similarity) surpasses a predefined threshold
ε (0 < ε ≤ 1). A vertex u is categorized as a core vertex if
it possesses at least µ (µ ≥ 2) structurally similar neighbors.

Clusters within G originate from core vertices and expand to
encompass all vertices connected to cores through structurally
similar edges. Any vertex not included in the clusters is
classified as a hub vertex if its neighbors belong to two or
more clusters; otherwise, it is classified as an outlier vertex. It
is evident that the foundational principles of SCAN hinge on
the connectivity between nodes and the existence of common
neighbors. Yet, in HINs, even the vertices of the same type
may not connect directly, let alone having common neighbors
and the formulation of more intricate definitions upon that.

Our Approach. Based on the above analysis, the key to
devising SCAN over HINs is to precisely depict the connection
between two vertices of the same type and the corresponding
common neighbors between them. On the other hand, meta-
path, defined as a sequence of vertex and edge types based on
the network schema of a HIN, represents semantically valid
paths between specific node types. Prior research across vari-
ous graph analytics tasks over HINs, such as similarity search
[10], relationship prediction [13], and recommendation [14],
demonstrates meta-path not only improves interpretability but
is also essential for uncovering complex, multi-relational pat-
terns within HINs. Clearly, meta-path is the backbone for
structuring meaningful interactions between vertices within
HINs. Inspired by this, in this paper, we introduce the meta-
path neighbor (Definition 3.4 in Section III) in which two
vertices u and v are considered to be connected if there
exists a path instance of the given meta-path between u and
v. Following the meta-path neighbor, we propose the non-
independent common meta-path neighbor which is a meta-path
neighbor of both u and v. Although direct and intuitive, it may
lead to the so-called “single-vertex failure” issue. Consider the
HIN shown in Fig. 1 (a) and assume the given meta-path is
P = (APA) (Fig. 1 (c)), it is easy to verify that there exist
three paths a5 → p4 → a6, a5 → p4 → a7, a6 → p4 → a7
following the pattern of P . Therefore, a7 is a non-independent
common meta-path neighbor of a5 and a6. However, revisiting
these three edges, we can observe that p4 appears in all of
these three edges. If p4 disappears, the connection among a5,
a6, a7 disappears. To avoid the “single-vertex failure” issue
in non-independent common neighbor and further improve the
robustness of the model, we propose the independent common
neighbor which requires the three path instances connected
u, v, and w do not share any more vertex except u, v,
and w. Based on meta-path neighbor and non-independent
common neighbor/independent common neighbor, we define
the corresponding meta-path structural similarity, and core
vertex, hub vertex, and outlier vertex accordingly. The case
studies on real HINs in our experiment (Exp-4,5,6 in Sec-
tion VI) demonstrate the effectiveness of our proposed model
in identifying different meaningful roles of vertices in HINs
such as DBLP, IMDB, and product network. However, as the
newly proposed models are more complex than SCAN for
homogeneous networks, the following challenges need to be
addressed to make our proposed model practically applicable:
(1) How to cluster an input HIN for a given meta-path and

parameters ε and µ following the definition of the new model?
(2) Is it possible to further improve the clustering performance
by careful algorithm design?

Contribution. In this paper, we answer the above questions
and make the following contributions:
• We propose a new structural clustering model named

HINSCAN (Two variants: non-independent HINSCAN and
independent HINSCAN for different users’ requirement)
based on meta-path for clustering the HINs. To the best of
our knowledge, this is the first work for structural clustering
on HINs.

• We propose efficient algorithms to conduct the clustering for
the given parameters. For the non-independent HINSCAN,
we first propose a transformation-clustering framework via
transforming the input HINSCAN to a homogeneous graph
named meta-path transformed graph and further improve
the performance by introducing a new search-join trans-
formation paradigm. For the independent HINSCAN, we
design an efficient algorithm to verify the independence
regarding the path instances of the given meta-path for
three vertices, and further improve the whole clustering
performance by introducing the lower bound and upper
bound of the structurally similar neighbors of each vertex
to prune unnecessary computation.

• We conduct extensive experiments to evaluate the effective-
ness and efficiency of our proposed methods on real HINs.
The results demonstrate that HINSCAN is able to obtain
meaningful clustering results on HINs and our proposed
algorithms can conduct the clustering efficiently for the
given parameters.

II. RELATED WORK

Graph data analysis is crucial for uncovering complex
relationships and patterns in interconnected data, enabling
insights and solutions across a wide range of fields, from
social networks to biological systems and beyond [15–24].
Graph clustering, a pivotal concern in graph data analysis,
has garnered substantial research interest [1, 25]. Originat-
ing with the introduction of the structural graph clustering
framework (SCAN) in [26], the field has since witnessed a
plethora of advancements. For online algorithms with fixed
SCAN parameters, SCAN++ [27], pSCAN [28] and anySCAN
[29] accelerate SCAN by eliminating unnecessary structural
similarity computation. Among these, pSCAN emerges as
the foremost online algorithm for SCAN on homogeneous
graphs, demonstrating superior efficiency relative to contem-
poraries. GPUSCAN [30, 31] harnesses GPU technology to
accelerate SCAN execution, while SparkSCAN [32] adapts
SCAN for the Spark computing framework. pmSCAN [33]
tackles large-scale graphs exceeding main memory constraints,
and ppSCAN [34] enhances performance through parallelized
pruning algorithms and vectorized instructions. Index-based
algorithms, exemplified by GS*-Index [35], introduce space-
efficient indexing alongside an index-driven query processing
mechanism. Building on this, [36] offers a parallelized GS*-
Index and an approximate construction algorithm utilizing

locality-sensitive hashing. [37] focuses on maintaining struc-
tural similarity amidst graph updates, proposing an approxi-
mate algorithm with theoretical guarantees. [38] contributes
a novel structural clustering paradigm for directed graphs,
coupled with an index-driven strategy for efficient clustering.
However, all preceding methods pertain exclusively to homo-
geneous graphs and the corresponding techniques cannot be
directly extended to support HINs. Therefore, in this paper,
we propose a structural clustering model for HINs and design
efficient algorithms to conduct the clustering following the
new model. Note that [12] uses edge-joint meta-path neighbors
to define the truss model on HINs, which inspires the definition
of our independent common meta-path neighbors. Despite the
existence of alternative graph clustering methods for HINs, as
seen in [39–42], none are grounded in structural clustering,
thereby lacking the capability of SCAN to effectively identify
clusters, hubs, and outliers. A comprehensive survey on this
topic can be found in [43].

III. PRELIMINARIES

Let G = (V,E) be a graph, where V (G) is the set of
vertices and E(G) is the set of edges, respectively. For a vertex
v ∈ V (G), we use nbr(v,G) to denote the set of neighbors of
v, i.e., nbr(v,G) = {u|(u, v) ∈ E(G)}. The degree of a vertex
v ∈ V (G), denoted by deg(v,G) is the number of neighbors
of v, i.e., deg(v,G) = |nbr(v,G)|. For simplicity, we omit G
in the notations when the context is self-evident.

Definition 3.1: (Heterogeneous Information Network [10])
An heterogeneous information networks (HIN) is a directed
graph G = (V,E, ψ, φ,A,R) where: (1) V is the set of
vertices. (2) E is the set of edges. (3) ψ : V → A is a
vertex type mapping function that maps each vertex v ∈ V
to a vertex type ψ(v) ∈ A. (4) φ : E → R is an edge type
mapping function that maps each edge e ∈ E to an edge type
φ(e) ∈ R. Here, A is the set of vertex types, and R is the set
of edge types.

Accordingly, if a graph G has vertices and edges of the
same type, we call it a homogeneous graph. For the ease of
presentation, we use G to denote a homogeneous graph and G
to denote an HIN thereafter when the context is self-evident.

Definition 3.2: (HIN Schema [10]) Given an HIN G = (V,E)
with mappings ψ : V → A and φ : E → R, its schema TG is
a directed graph defined over vertex types A and edge types
from R, i.e., TG = (A,R).

The HIN schema describes all permissible edge types be-
tween vertex types. If there is an edge R from vertex type A1

to vertex type A2, the inverse edge R−1 naturally exists from
A2 to A1. We use lowercase letters (e.g. a1) to denote vertices,
and uppercase letters (e.g., A1) to denote vertex types.

Definition 3.3: (Meta-path [10]) A meta-path P is a path
defined on an HIN schema TG = (A,R), and is represented
as A1

R1−−→ A2
R2−−→ · · · Rl−→ Al+1, where l is the length of P ,

Ai ∈ A, and Ri ∈ R(1 ≤ i ≤ l).
For simplicity, we also use vertex type names to denote a

meta-path, i.e., P = (A1A2 · · ·Al+1), if there are no multiple

edges between the same pair of vertex types. We also use
|P| to denote the length of P , P[i] to denote i-th vertex type
of P , where 0 ≤ i < |P|, P[i . . . j] to denote the sub-path
of P from position i to j, where 0 ≤ i < j < |P|, i.e.,
P[i . . . j] = (AiAi+1 · · ·Aj). A path p = a1 → a2 · ·· → al+1

between vertices a1 and al+1 is called a path instance of P ,
if for all i, the vertex ai and edge ei = (ai, ai+1) satisfy
ψ(ai) = Ai and φ(ei) = Ri. For example, in Fig. 2, assume
the given meta-path P1 = (APA), the path a0 → p0 → a1
is a path instance of P1. Since the meta-path provides the
meta-level explainable semantics of HINs [10] and has been
successfully used in various graph analytics tasks over HINs
such as similarity search [10], relationship prediction [13], and
recommendation [14].

Definition 3.4: (Meta-path Neighbor) Give a meta-path P
on an HIN G, for a vertex u ∈ V (G), a vertex v ∈ V (G) is
a meta-path neighbor of u regarding P if there exists a path
instance of P between u and v.

Fig. 2. A HIN G with Schema and Meta-path (ε = 0.80, µ = 3)

Definition 3.5: (Meta-path Structural Neighborhood) Given
a meta-path P on a HIN G, for a vertex u ∈ V (G), the
structural neighborhood of u, denoted by NP(u), is defined as
NP(u) = {v ∈ V (G)|v is a meta-path neighbor of u}∪{u}.
Definition 3.6: (Meta-path Structural Similarity) Given a
meta-path P on a HIN G, for two vertices u, v ∈ V (G), the
meta-path structural similarity between u and v is defined as:

σP(u, v) =
|NP(u) ∩NP(v)|√
|NP(u)||NP(v)|

(1)

Example 3.1: Consider the HIN G 1 shown in Fig. 2.
Assume the given meta-path P2 = (APTPA). For a0,
a1 is a meta-path neighbor of a0 as there exists a path
a0 → p0 → t0 → p0 → a1 between a0 and a1, and a2
is also a meta-path neighbor of a0 due to a0 → p0 →
t0 → p1 → a2, and thus NP(a0) = {a1, a2}. Similarly,
NP(a2) = {a0, a1, a2, a3, a4, a5}, NP(a3) = {a2, a3, a4, a5}.
The meta-path similarity between a2 and a3 is σP(a2, a3) =
|{a2, a3, a4, a5}|/

√
6× 4 ≈ 0.82.

Given a meta-path structural similarity threshold ε (0 < ε
≤ 1), the ε meta-path neighborhood for a vertex u is defined
as follows:

Definition 3.7: (ε Meta-path Neighborhood) Given a meta-
path P on a HIN G and a meta-path structural similarity
threshold ε, for a vertex u ∈ V (G), the ε meta-path neigh-
borhood of u, denoted by Nε[u], is defined as the subset of

NP [u] in which every vertex v satisfies σP(u, v) ≥ ε, i.e.,
NP,ε[u]={v ∈ NP [u] | σP(u, v) ≥ ε}.

When the number of ε meta path neighbors of a vertex is
large enough, it becomes a core vertex, which is defined as:

Definition 3.8: (Core) Given a meta-path P on an HIN G, a
meta-path structural similarity threshold ε (0 < εc ≤ 1), and
an integer µ (µ ≥ 2), a vertex u is a core if |NP,ε[u]| ≥ µ.

Given a core vertex u, the structurally reachable vertices of
u is defined as:

Definition 3.9: (Structurally Reachable) Given two vertices
u and v in G, v is structurally reachable from u if there exists
a sequence of vertices v1, v2, . . . , vl ∈ V (G) (l ≥ 2) such
that: (1) v1 = u, vl = v; (2) v1, v2, . . . , vl−1 are core vertices;
and (3) vi+1 ∈ NP,ε[vi] for each 1 ≤ i ≤ l − 1.

Definition 3.10: (Cluster) A cluster C ∈ V (G) is a non-empty
subset of V (G) such that:
• (Connectivity) For any two vertices v1, v2 ∈ C, there exists

a vertex u ∈ C such that both v1 and v2 are structurally
reachable from u.

• (Maximality) If a core vertex u ∈ C, then all vertices that
are structure reachable from u also belong to C.
For ease of presentation, we refer to a vertex in a cluster

that is not a core vertex as a non-core vertex. After identifying
all the clusters C in G, we can determine the set of hubs and
outliers in G, which are defined as follows:

Definition 3.11: (Hub and Outlier) Given the set of clusters
in an HIN G, a vertex u that is not in any cluster is a hub vertex
if its meta-path neighbors belong to two or more clusters.
Otherwise it is an outlier vertex.

Example 3.2: Reconsider G in Fig. 2, it is easy to verify a2, a7
are core vertices as |NP,ε(a2)| = 3 ≥ 3 and |NP,ε(a7)| =
4 ≥ 3. Following the core vertex, we can find two clusters:
C1 = {a2, a3, a4} and C2 = {a6, a7, a8, a9}, a5 is a hub
vertex as it is not in any cluster but its meta-path neighbors,
such as a4 and a6, belong to two clusters C1 and C2. a0 and
a1 are outlier vertices as they are not belong to any cluster.

Following Definition 3.6, the meta-path structural similarity
between two vertices u and v is determined by their common
meta-path neighbors w. Although this definition is direct and
intuitive, it may include vertices that are weakly engaged in the
cluster due to the path instances from u and v to their common
meta-path neighbors w may share the same vertices and causes
the “single-vertex failure” issue as discussed in Section I. To
address this issue, we define the independent HINSCAN model
based on independent common meta-path neighbors:

Definition 3.12: (Independent Common Meta-path Neigh-
bors) Given a meta-path P on an HIN G, for two vertices
u, v ∈ V (G), the independent common meta-path neighbors
of u and v, denoted by IP(v, w), is the set of vertices
w ∈ NP(u) ∩ NP(v) such that there exist three independent
path instances p1, p2, p3 of P connecting (u, v), (u,w) and
(v, w) and p1, p2, p3 do not share any vertex except u, v, and
w.

Definition 3.13: (Independent Meta-path Structural Simi-
larity) Given a meta-path P on an HIN G, for two vertices
u, v ∈ V (G), the independent meta-path structural similarity
between u and v is defined as:

σIP(u, v) =
|IP(u, v)|√
|NP(u)||NP(v)|

(2)

Example 3.3: Consider the vertex a0 and a1 in G shown in
Fig. 2. We have NP(a0) ∩NP(a1) = {a0, a1, a2}. However,
we can’t find three independent path instances connecting
(a0, a1), (a0, a2) and (a1, a2), because they must be connected
through t0. For this reason, IP(a0, a1) = {a0, a1}, and
σIP(a0, a1) = |{a0, a1}|/

√
3× 3 ≈ 0.67, which is different

from σP(a0, a1) = |{a0, a1, a2}|/
√
3× 3 = 1 if meta-path

structural similarity is used.

Clearly, the “single-vertex failure” issue is avoided in Def-
inition 3.13. Following Definition 3.13, we can further define
the counterparts of ε meta-path neighborhood, core, cluster,
hub, and outlier in the similar way as Definition 3.7 ∼
Definition 3.11. For the sake of differentiation, we refer to
the clustering model based on meta-path structural similarity
as the non-independent HINSCAN model.

Problem statement. Given a HIN G, a meta-path P , two
parameters ε (0 < ε ≤ 1), and µ (µ ≥ 2), in this paper,
we aim to efficiently compute all clusters in G and identify
the corresponding role of each vertex following the non-
independent HINSCAN model and the independent HINSCAN
model. As we aim to cluster the vertices in G with the same
type, the first and last vertices of P must be of the same type.

IV. NON-INDEPENDENT HINSCAN ALGORITHMS

A. A Transformation-Clustering Framework

To conduct the clustering, a direct approach involves first
computing the meta-path structural similarity between every
pair of vertices and then identifying the role of each vertex ac-
cording to Definition 3.8, Definition 3.10, and Definition 3.11.
However, this approach entails significant unnecessary com-
putation, as shown by the results of the state-of-the-art SCAN
algorithm for homogeneous graphs, pSCAN [44]. By avoid-
ing unnecessary computations, pSCAN achieves significant
speedup on performance and has demonstrated success across
numerous applications. This motivates us to explore whether,
given the impressive performance of pSCAN, we can design
a new algorithm for non-independent HINSCAN that fully
exploits the techniques proposed in pSCAN. Following this
line of thought, we define:

Definition 4.1: (Meta-path Transformed Graph) Given a
meta-path P on an HIN G, the meta-path transformed graph
GP = (V,E) is a homogeneous graph consisting of the
vertices with the target clustering vertex type and two vertices
u and v have an edge if there is a path instance of P between
u and v in G.

For the ease of presentation, given a vertex u ∈ GP , we use
N(u) to denote nbr(u,GP) ∪ {u}, and use σ(u, v) to denote

the structural similarity [44] between u and v in GP , i.e.,
σ(u, v) = |N [u]∩N [v]|√

|N [u]∪N [v]|
. We have:

Lemma 4.1: Given a meta-path P on an HIN G, let GP be
the meta-path transformed graph G′, for two vertices u, v ∈
V (G′), σP(u, v) = σ(u, v).

Meanwhile, it can be easily verified that for a vertex
u ∈ V (G), if |NP,ε[u]| ≥ µ, then, the number of vertices
v ∈ N(u) with σ(u, v) ≥ ε in GP is also not less than µ.
This implies that a core vertex in G is also a core vertex
in GP . Similar conclusions can be drawn regarding non-core
vertices, hub vertices, and outlier vertices. Therefore, we can
identify the roles of vertices in G based on GP . Following
this idea, our two-phase non-independent HINSCAN algorithm
works as follows: first, we transform G into GP . Then, we
perform clustering on GP using pSCAN, and the identified
roles regarding the vertices in GP correspond exactly to
what we need. The pseudocode of our algorithm is shown
in Algorithm 1.

Algorithm 1: NIHINScan(G,P, ε, µ)
1 V← {u ∈ V (G)|ψ(u) = P[0]}; GP ← ∅;
2 for each vertex u ∈ V do
3 S ← ∅, F [·]← ∅;
4 findMPN(G,P, 0, u,S,F [·]);
5 for each v ∈ S do
6 if (u, v) /∈ GP then add edge (u, v) into GP ;
7 pSCAN(GP , ε, µ) [44];
8 Procedure findMPN(G, P , i, u, S, F [·])
9 for each v ∈ nbr(u,G) do

10 if P[i] = ψ(v) and v /∈ F [i] then
11 if i+ 1 < |P| then
12 findMPN(G,P, i+ 1, v,S,F [·]); F [i].add(v);
13 else
14 S.add(v); F [i].add(v);

Algorithm. Algorithm 1 begins by constructing the meta-path
transformed graph GP (lines 1-6) and then directly invokes
pSCAN [44] to identify the roles of the vertices in GP (line 7).
Specifically, it first retrieves the vertices aiming to cluster with
type P[0] and stores them in V (line 1). Obviously, the vertices
in V constitute the vertices of GP . Then, it iterates over each
vertex u ∈ V (line 2), obtains the meta-path neighbors of u
through the findMPN and stores them in S (line 4). After
that, it adds edge between u and its meta-path neighbors v in
GP (line 5-6). When the meta-path transformed graph GP is
built, pSCAN is invoked to identify the roles of the vertices
in GP . For the procedure findMPN, staring from u (line 4), it
recursively visits i-th vertex type of P (line 9) and selects the
neighbors v of u with P[i] = ψ(v) (line 10). F [i] is used to
store the visited vertices with type P[i] during exploration.
When all the |P| vertex types are explored, the meta-path
neighbors of u are stored in S (line 14).

Example 4.1: Consider the HIN G in Fig. 2, Fig. 3 shows its
corresponding meta-path transformed graph GP , where P =
(APTPA). The vertices in G with vertex type A constitute the
vertices of GP , and the edges can be obtained by procedure

Fig. 3. Meta-path Transformed Graph GP and Clustering Result of pSCAN

findMPN. Take a0 as an example, we get the vertex of type
P among the neighbors of a0, which is p0. Then, we explore
p0 to get its neighbors of type T , which is t0. After that, we
explore t0 and get p0, p1. Finally, we explore p0, p1 in turn
and get a1, a2. Then, the edges (a0, a1) and (a0, a2) are added.
For the given parameters ε = 0.8, µ = 3, the clustering result
based on pSCAN is also illustrated. It is easy to verify that
the result is consistent with the results shown in Fig. 2.

The correctness of Algorithm 1 can be directly proved
following Lemma 4.1. For the time complexity of Algorithm 1,
we have:

Theorem 4.1: Given a meta-path P on an HIN G, two
parameter ε and µ, the time complexity of Algorithm 1 to
conduct the clustering is O(|V (GP)| · deg|P|max + |E(GP)|1.5),
where |V (GP)|/|E(GP)| denotes the number of vertices/edges
in GP respectively, degmax denotes the maximum degree of
vertices in G.

B. A Search-Join Transformation Algorithm

By introducing the meta-path transformed graph, Algo-
rithm 1 can fully leverage the optimization of pSCAN.
However, transforming the input graph G into GP is time-
consuming, as demonstrated in Theorem 4.1. We also evaluate
the time required for these two phases on five real datasets used
in our experiments, and the results are presented in Table I. As
shown in Table I, the time used for transforming G into GP
is times significantly longer than the time used for clustering
on average. On dataset Foursquare, the transformation phase
takes even two orders of magnitude more time than the
clustering phase. Therefore, to accelerate the performance
of non-independent HINSCAN, it is crucial to improve the
efficiency of constructing the meta-path transformed graph.

TABLE I
TIME CONSUMED AT EACH PHASE OF ALGORITHM 1 (us)

Phase TMDB IMDB DBLP Foursquare DBpedia
Transform 85,986 415,418 4,826,255 3,024,440 3,620,805
Clustering 17,689 2705 288,636 10,451 339,808

A Search-Join Transformation Paradigm. Revisit Algo-
rithm 1, findMPN obtains the vertex pairs connecting by a path
instance of the given meta-path P by exploring the vertices
in G directly following the direction of P . However, this
approach may involve lots of redundant computation. Consider
a HIN with meta-path P = (ABC) shown in Fig. 4 (a). If
we follow the meta-path direction directly, A → B → C,
we need to gather all vertices of type A (e.g., {a1, a2, a3})

and then perform the same search operation on them one
by one. For instance, starting from a1, we first find all its
neighbors of type B, and then for each vertex of type B,
we find all its neighbors of type C. This process involves
exploring vertices {a1, b1, c1}. Similarly, for a2, we explore
{a2, b1, b2, c1}, and for a3, we explore {a3, b1, b2, c1}. It’s
evident that b1 and b2 and their corresponding neighbors are
explored multiple times, causing additional overhead. Alterna-
tively, we can get such vertex pairs by dividing P = (ABC)
into two sub-meta-path P1 = (BA) and P2 = (BC) first.
Then, we search the neighbors of vertices with vertex type
B following the direction of B → A and B → C, and
join the neighbors together to obtain the final vertex pairs.
This requires us to explore the vertices of type B along
two sub-meta-paths, involving vertices {b1, a1, a2, a3, c1} and
{b2, a2, a3, c1}. Moreover, we can search the vertex pairs in
the reverse order of P , C → B → A. Similar to the above,
this involves exploring vertices {c1, b1, b2, a1, a2, a3}. From
this example, we can observe that different search methods
could affect the number of explored vertices, and thus the
performance of the meta-path transformed graph construction.
This motivates us to investigate whether we can find a search
method that minimizes vertex exploration as much as possible
to improve the performance of meta-path transformed graph
construction.

(a) HIN (P = ABC) (b) A Conceptual Example

Fig. 4. A Search-Join Transformation Paradigm

Generally, in Fig. 4 (b), A,B,C, D, E represent five types
of vertices, respectively. Assume that there are m vertices
of type B and n vertices of type C. Let x−/x+ denote
the total number of vertices that need to be explored from
C → B / B → C. Additionally, y+i represents the number of
vertices that need to be explored from each vertex i in C to its
(C,D,E)-path-neighbors in E. z−i represents the number of
vertices that need to be visited from each vertex i in B to its
(B,A)-path-neighbors in A. Assuming that the average time
complexity of visiting a vertex is O(α), the time complexity of
building the meta-path transformed graph by C → B → A and
C → D → E is: t1 = O(α·x−+

∑n
i=1 α·y

+
i +

∑m
i=1 α·β·z

−
i),

where 0 ≤ β ≤ n denotes that each vertex in B may be
connected to β vertices in C, And the time complexity of
building the meta-path transformed graph by B → A, B →
C → D → E is: t2 = O(α·x++

∑n
i=1 α·γ ·y

+
i +

∑m
i=1 α·z

−
i),

where 0 ≤ γ ≤ m denotes that each vertex in C may be
connected to γ vertices in B. It is easy to verify that x+ ' x−,
and if m � n, we have

∑n
i=1 γ · y

+
i �

∑m
i=1 β · z

−
i , which

means t1 > t2. Therefore, starting the search with vertex types
that have fewer vertices tends to be more efficient. Based on
this observation, we define:

Definition 4.2: (Pivot Type) Given a meta-path P on an HIN
G, the pivot type ψP of P regarding G is the vertex type in P
such that the number of vertices in G belonging to that type
is minimum.

Algorithm 2: NIHINScan+(G,P, ε, µ)
1 ψP , idx← getPivotType(G,P);
2 V← {u ∈ V (G)|ψ(u) = ψP}; GP ← ∅;
3 Pf+ ← P[idx . . . |P|]; Pf - ← P[0 . . . |idx|];
4 for each u ∈ V do
5 M← ∅; Sf+ ← ∅, Sf - ← ∅, Ff+ [·]← ∅, Ff - [·]← ∅;
6 findMPN(G,Pf+ , 0, u,Sf+ ,Ff - [·]);
7 findMPN(G,Pf - , 0, u,Sf - ,Ff - [·]);
8 for each v ∈ Sf+ do
9 for each w ∈ Sf - do

10 M←M∪ {(v, w)};
11 for each (v, w) ∈M do
12 add edge (v, w) into GP ;
13 pSCAN(GP , ε, µ) [44];
14 Procedure getPivotType(G,P)
15 i← 0; cnt←∞; ψ ← ∅;idx← 0
16 while i < |P| do
17 if cnt > |{u ∈ V (G)|ψ(u) = P}| then
18 cnt← |{u ∈ V (G)|ψ(u) = P}|;
19 ψ ← P[i]; idx← i
20 i++;
21 return ψ, idx;

Algorithm. According to Definition 4.2, our new search-join
transformation based non-independent HINSCAN algorithm is
shown in Algorithm 2. Different from Algorithm 1, it first
retrieves the pivot type ψP of P based on Definition 4.2
(line 1) and computes the vertices in G with type ψP (line
2). Moreover, based on the pivot type ψP , the meta-path
P is divided into two sub-meta-path Pf+ and Pf - (line 3).
Then, it iterates vertices in V (line 4). For each vertex u, two
searches following Pf+ and Pf - are conducted and the meta-
path neighbors of u regarding Pf+ /Pf - are stored in Sf+ /Sf -

(line 6-7). After that, the meta-path neighbors of u stored in
Sf+ and Sf - are visited and the corresponding edge (v, w)
is added into GP (line 8-12). When GP is built, pSCAN is
invoked to identify the roles of the vertices (line 13). Procedure
getPivotType is used to find the pivot type of P regarding G
following Definition 4.2. As the pseudocode is self-evident,
we omit the explanation.

Fig. 5. Example of pivot type

Example 4.2: Consider the HIN G in Fig. 2, Fig. 5 shows
the pivot type we choose to build the transformed graph GP ,
which is type T . Type T divides the meta-path into two sub-
meta-paths, i.e. P1 = (APT),P2 = (TPA). For each sub-
meta-path, we traverse each type along the path start from T ,
and then join the obtained vertex set of type A. In the end,
the edges in GP is obtained. Take t0 as an example, for the
sub-meta-path P1, we first get the vertex of type P among the
neighbors of t0, which is p0, p1. Then, we explore p0, p1 in
turn and get the set of type A, which is {a0, a1, a2}. Similarly,
for sub-meta-path P2, we can also get the set {a0, a1, a2}.
Then, we join these two set, and finally we have an edges
(a0, a1), (a0, a2), and (a1, a2).

V. INDEPENDENT HINSCAN ALGORITHMS

A. A Verification-Based Approach

Following Definition 3.13, it is clear that we can still con-
duct the clustering based on the meta-path transformed graph.
However, as the independent meta-path structural similarity is
defined based on independent common meta-path neighbors,
and while the independence among the path instances is
not considered when constructing the meta-path transformed
graph. Therefore, we need to verify the independence when
retrieving the independent common meta-path neighbors, and
compute the independent meta-path structural similarity ac-
cordingly. Following this idea, our baseline algorithm for
independent HINSCAN is shown in Algorithm 3.

Algorithm 3: IHINScan(G,P, ε, µ)
1 construct GP based on G (line 1-12 of Algorithm 2);
2 for each u ∈ V (GP) do
3 for each v ∈ nbr(u,GP) do
4 IP(u, v)← findIMPN(N [u], N [v]);
5 σIP(u, v)← |IP(u, v)|/

√
|N [u]| · |N [v]|;

6 if σIP(u, v) ≥ ε then
7 NP,ε[v].add(u); NP,ε[u].add(v);
8 C← ∅; V ′ ← V (GP); C ← ∅;
9 for each u ∈ V (GP) do

10 if u is explored then continue;
11 if |NP,ε[u]| ≥ µ then
12 Q← ∅; Q.push(u); mark u as explored; C ← C ∪ {u};

V ′ ← V ′ \ {u}
13 while Q 6= ∅ do
14 v ← Q.pop();
15 for each w ∈ NP,ε[v] do
16 if w is unexplored then
17 C ← C ∪ {w}; mark w as explored;
18 if w /∈ Q ∧ |NP,ε[u]| ≥ µ then
19 Q.push(w);
20 else
21 mark w as non-core vertex;

22 C← C ∪ {C}; C ← ∅;
23 mark all non-core vertex as unexplored;
24 for each u ∈ V ′ do
25 if u’s neighbors belong to different clusters then
26 mark u as hub;
27 else
28 mark u as outlier;

Algorithm. Following a similar framework as Algorithm 2,
IHINScan first constructs GP based on G (line 1). Then, it
iterates each vertex in V (GP) (line 2), and for each neighbor
of v of u (line 3), it first finds the independent common meta-
path neighbors by procedure findIMPN (line 4) and computes
the independent meta-path structural similarity σIP(u, v) fol-
lowing Definition 3.13 (line 5). If σIP(u, v) ≥ ε (line 6), u
and v are added into Nε[v] and Nε[u], respectively (line 6-7).
After the independent meta-path structural similarity regarding
all connected vertex pairs in GP is obtained, it computes
the clusters in GP based on Definition 3.10. Specifically, for
each core vertex v in GP (line 14), it explores the vertices
w ∈ NP,ε[v] (line 15) and put them in the same cluster (line
17). If w is also a core vertex (line 18), w is further pushed
in to Q (line 19). The procedure continues until Q is empty
(line 13). When all the clusters are found, it computes the
hub vertices and outlier vertices based on Definition 3.11,
respectively (line 24-28).

Algorithm 4: findIMPN(N , u, v,P)
1 IP ← ∅;
2 for w ∈ N do
3 Scand ← {(u, v,P), (u,w,P), (v, w,P)};
4 if verify(Scand) then IP .add(w);
5 return IP ;
6 Procedure verify(Scand)
7 i← 1;
8 while i ≤ |Scand| do
9 N ′i ← ∅, N ′′i ← ∅;

10 findMPN(G,Scand[i].P[0...d |P|2 e], 0,Scand[i].u,N
′
i , ∅);

11 findMPN(G,Scand[i].P[d |P|2 e...|P|], 0,Scand[i].v,N
′′
i , ∅);

12 Ni ← N ′i ∩N ′′i ; i++;
13 Ncand[·]← sort N1, · · · ,N|Scand| in increasing order of size;
14 return enum(0, ∅,Ncand[·]);
15 Procedure enum(i,S,Ncand[·])
16 if i ≥ |Scand| then
17 S ′cand ← ∅;
18 for j ← 1 to |Scand| do
19 Pl ← Scand[j].P[0...d |P|2 e];
20 Pr ← Scand[j].P[d |P|2 e...|P|];
21 if |Pl| ≥ 2 then
22 S ′cand ← S ′cand ∪ {(Scand[j].u,S[j],Pl};
23 if |Pr| ≥ 2 then
24 S ′cand ← S ′cand ∪ {(Scand[j].v,S[j],Pr]};
25 if S ′cand = ∅ or verify(S ′cand) then return true;
26 else return false;
27 else
28 for v ∈ Ncand[i] ∧ v /∈ S[0 . . . i− 1] do
29 S[i]← v;
30 if enum(i+ 1,S,Ncand[·]) then return true;
31 return false;

Procedure findIMPN (Algorithm 4) is used to verify whether
the vertices in N are the independent common meta-path
neighbors between two vertices u and v regarding P . To
achieve this goal, the sub-routine verify is invoke with parame-
ters (u, v,P), (u,w,P), and (v, w,P) for each vertex w ∈ N
(line 2-3). If w passes the verification, then w is added into
IP (line 4). The independent common meta-path neighbors are

returned in line 5. The sub-routine verify checks whether there
exists three independent path instances of P connecting (u, v),
(u,w) and (v, w) and they do not share any vertex except u,
v, and w following Definition 3.12. Intuitively, if there exist
three independent path instances, then there must exists three
different vertices x1, x2, x3 with vertex type P[d |P|2 e] at d |P|2 e
position of these path instances. Recursively, there must further
exist six different vertex pairs (u, x1), (x1, v), (v, x2), (x2, w),
(w, x3), and (x3, u) with independent path instances similarly.
The sub-routine verify conduct the above recursive verification
until the length of divided meta-path is 2. Specifically, for
each pair (u, v,P) ∈ Scand (line 8), it computes common
neighbors of u / v starting from u / v following the meta-
path P[0, . . . , d |P|2 e] / P[d |P|2 e, . . . , |P|], and store them in Ni
where 1 ≤ i ≤ |Scand| (line 9-12). Then, it sorts them in the
increasing order of their size (line 13). After that, by retrieving
each vertex in Ni, it checks whether exists a combination of
the retrieved vertices such that all the vertices are different
by S through procedure enum (line 14, line 28-30). If such a
combination exists, it further splits each pair (u, v,P) ∈ Scand
into two pairs and repeats the above procedure recursively until
|P| = 2 is achieved (line 16-26).

Fig. 6. A running example Algorithm 4 for a2, a3, and a4

Example 5.1: Consider the HIN G in Fig. 2 and assume
the given meta-path is P2 = (APTPA), Fig. 6 shows the
steps to verify whether there exist three independent path
instances among a2, a3, and a4. At step 1, take a2 and
a3 as an example, P2 are divided into two sub-meta-path
P ′2 = (APT) and P ′′2 = (TPA) and P[d |P|2 e] = T . And
we have N ′1 = {t0, t1, t2} and N ′′1 = {t1, t2, t3}. Thus,
Ncand[1] = {t1, t2}. Ncand[2] = {t1, t2} and Ncand[3] =
{t1, t2, t3} can be obtained similarly. Then we find 3 different
vertices t1 ∈ Ncand[1], t2 ∈ Ncand[2] and t3 ∈ Ncand[3]
by trying different combinations of vertices from Ncand[1],
Ncand[2] and Ncand[3] following the procedure enum in Al-
gorithm 4. Therefore, we continue to step 2. At step 2, due
to the existence of t1, t2 and t3, we has to verify whether
there exist 6 different vertices with type P , which connect
pairs (t1, a2), (t1, a3), (t2, a2), (t2, a4), (t3, a3) and (t3, a4),
respectively. This is similar to the previous process of verifying
t1, t2 and t3 at step 1. Finally, we find three independent
path instances, i.e. (a2, p1, t1, p2, a3), (a2, p3, t2, p4, a4) and
(a3, p5, t3, p6, a4), which means a4 is an independent meta-
path neighbor of a2 and a3.

Theorem 5.1: Given a meta-path P on an HIN G, two
parameters ε and µ, the time complexity of Algorithm 3 to
conduct the clustering is O(|V (GP)|·deg|P|max+|E(GP)|1.5 ·ν),

where |V (GP)|/|E(GP)| denotes the number of vertices/edges
in GP respectively, degmax denotes the maximum degree of
vertices in G, ν denotes the time used for the procedure verify.
Proof: Algorithm 3 follows the same framework of Algo-
rithm 1. Therefore, the time complexity to construct GP is
O(|V (GP)|·deg|P|max). Following [44], the total number of com-
mon meta-path neighbors for all vertex pairs connecting by an
edge can be bounded by O(|E(GP)|1.5), and each common
meta-path neighbor needs to invoke verify once. Therefore, the
time complexity of clustering is O(|E(GP)|1.5 ·ν). Therefore,
the theorem holds. �

B. A pSCAN Enhanced Pruning Algorithm

Algorithm 5: IHINScan+(G,P, ε, µ)
1 construct GP based on G (line 1-12 of Algorithm 2);
2 pSCAN(GP , ε, µ);
3 C ← {v|v ∈ V (GP) ∧ lb(v) ≥ µ}, C′ ← ∅;
4 for each u ∈ C do
5 N ← {w ∈ nbr(u,GP)|σ(u,w) = ∅ ∨ σ(u,w) ≥

ε}, i← 0;
6 while ub(u) ≥ µ ∧ lb(u) + |N | − i ≥

µ ∧ ub(u)− |N |+ i < µ ∧ i < |N | do
7 v ← N [i];
8 if σ(u, v) ≥ ε then
9 σ(u, v)← findIMPN(N [u], N [v])/

√
|N [u]| · |N [v]|;

10 if σ(u, v) < ε then
11 lb(u)← lb(u)− 1; lb(v)← lb(v)− 1;
12 ub(u)← ub(u)− 1; ub(v)← ub(v)− 1;
13 else
14 σ(u, v)← findIMPN(N [u], N [v])/

√
|N [u]| · |N [v]|;

15 if σ(u, v) ≥ ε then
16 lb(u)← lb(u) + 1; lb(v)← lb(v) + 1;
17 else ub(u)← ub(u)− 1; ub(v)← ub(v)− 1;
18 i← i+ 1;
19 if lb(u) ≥ µ then C′ ← C′ ∪ {u};
20 for each u ∈ C′ do
21 for each v ∈ nbr(u,GP) do
22 if lb(v) ≥ µ∧ σ(u, v) ≥ ε then u, v in the same cluster;
23 C← the set of clusters of core vertices;
24 for each C ∈ C do
25 for each u ∈ C do
26 for each v ∈ nbr(u,GP) do
27 if lb(v) < µ ∧ v /∈ C then
28 if σ(u, v) ≥ ε ∨ σ(u, v) = ∅ then
29 σ(u, v)←

findIMPN(N [u], N [v])/
√
|N [u]| · |N [v]|;

30 if σ(u, v) ≥ ε then C ← C ∪ {v};
31 for each vertex u not in the cluster do
32 line 25-28 of Algorithm 3;

Based on Theorem 5.1, it is clear that invoking the proce-
dure findIMPN to compute the independent common meta-
path neighbors is the most time-consuming part of Algo-
rithm 3. Therefore, to improve the performance of independent
HINSCAN, the key is to avoid the unnecessary invocation
of findIMPN. To achieve this goal, we propose a pSCAN
enhanced pruning algorithm in which the lower bound and
upper bound of |NP,ε[u]| for each vertex u is used to prune
the unnecessary computation of independent common meta-

path neighbors. Before introducing the algorithm, we have the
following lemma:

Lemma 5.1: Given a meta-path P on an HIN G, for two
vertices u, v, σIP(u, v) ≤ σP(u, v).

Following Lemma 5.1, it is clear that σP(u, v) is an upper
bound of σIP(u, v). Moreover, based on Definition 3.10, we
can derive that if a vertex is not a core vertex in non-
independent HINSCAN, it cannot be a core vertex in inde-
pendent HINSCAN. Considering that pSCAN is very fast as
verified in our experiments, we can perform pSCAN on GP
similarly as Algorithm 2 first, and only the vertices in the
clusters need to be verified according to Lemma 5.1. Following
this idea, a direct approach is that we use Algorithm 3 to
identify the roles of vertices in the clusters and the time-
consuming invocation of findIMPN for the hub vertices and
outlier vertices can be avoided.

However, this approach still does not fully exploit the
pruning potential of pSCAN. Revisit the procedure of pSCAN
in the above direct approach, it maintains the lower bound and
upper bound of the number of ε meta-path neighbors for each
vertex to further prune the unnecessary computation during the
clustering in essential. Obviously, the above direct approach
overlooked such bounds when identifying the roles of the
vertices in the clusters. This inspires us to think that whether
it is possible to further prune the invocations of findIMPN by
reusing these bounds to identifying the roles of the vertices
in the clusters. For the ease of presentation, we use lb(u) and
ub(u) to indicate the lower bound and upper bound of the
number of ε meta-path neighbors that pSCAN maintained for
a vertex u, N be the set of neighbors w of u in GP such
that σ(u,w) ≥ ε or σ(u,w) is not computed by pSCAN, and
we have the following lemma regarding a independent core
vertex:

Lemma 5.2: Given a meta-path P on an HIN G and two
parameters ε and µ, for a vertex u ∈ V (G), if u is a core
vertex of independent HINSCAN, then (1) ub(u) ≥ µ, (2)
lb(u)+ |N |− i ≥ µ, (3) ub(u)− |N |+ i < µ, where 0 ≤ i ≤
|N |.
Algorithm. Based on the above analysis, our pSCAN en-
hanced pruning algorithm for independent HINSCAN is shown
in Algorithm 5. It first constructs GP based on G in the same
way as Algorithm 2 (line 1). Then, pSCAN is used to prune
the hub vertices and outlier vertices as analyzed above (line
2). For the vertices in the clusters, it first retrieves the core
vertices in non-independent HINSCAN, namely lb(v) ≥ µ and
stores them in C (line 3). Then, for each core vertex of non-
independent HINSCAN u ∈ C (line 4), N stores the neighbors
of u in GP that σ(u,w) is not computed or not less than
ε (line 5). For each v ∈ N , it iteratively updates σ(u, v)
by findIMPN (line 9, 14). Based on the updated σ(u, v), it
maintains lb(u), lb(v), ub(u), and ub(v) accordingly (line 10-
12, line 16-17). If lb(u) ≥ µ, u is a core vertex of non-
independent HINSCAN clearly, and is stored in C′ (line 19).
When all the neighbors in N of u are verified and lb(u) ≥ µ,
then u is a core vertex of independent HINSCAN and recorded

TABLE II
DATASETS USED IN EXPERIMENTS

Datasets n m |A| |R| #Meta-Paths
TMDB 71,978 113,581 7 12 37
IMDB 854,616 3,898,144 4 3 12
DBLP 2,056,444 6,607,065 4 3 11

Foursquare 4,472,122 10,200,000 4 3 8
DBpedia 5,900,558 17,961,887 413 637 50

in C′ (line 19). After that, two adjacent core vertices in
independent HINSCAN are mark in the same cluster (line
20-22). Until now, all the core vertices of non-independent
HINSCAN have been identified. Then, it computes the non-
core vertices in independent HINSCAN in each clusters (line
24-30). Specifically, for each core vertex u ∈ C in independent
HINSCAN, it iterates it neighbors v in GP that is not a core
vertex of non-independent HINSCAN (line 27). If σ(u, v) ≥ ε
and is not updated or it is not computed before, it computes
the independent meta-path structural similarity by findIMPN
(line 28-29). If the independent meta-path structural similarity
between u and v is not less than ε, it is a non-core vertex
of non-independent HINSCAN in C (line 30). After all the
vertices in the clusters have been determined, the hub vertices
and outlier vertices are adjusted similarly as Algorithm 3.

VI. EXPERIMENTS

This section presents our experimental results. All the exper-
iments are conducted on a machine with an Intel Xeon 2.4GHz
CPU and 256GB main memory, running Ubuntu 20.04.6 LTS,
64 bit.

Dataset. We evaluate the algorithms on five real heterogeneous
information network: TMDB, IMDB, DBLP, Foursquare, and
DBPedia. TMDB is a movie knowledge graph including
entities like movies, actors, casts, crews and companies. IMDB
contains the movie rating records since 2000, and it has
four types of vertices (authors, directors, writers and movies).
DBLP includes publication records in computer science areas,
and the vertex types are authors, papers, venues and top-
ics. Foursquare contains the check-in records in US, which
has four types of vertices, including records, users, venues,
and categories. DBPedia contains the data extracted from
Wikipedia infoboxes using the mapping-based extraction. The
details are shown in Table II.

Meta-path Configuration. For the first four datasets, we
collect all the possible symmetric meta-paths with lengths
less than four according to the corresponding schema network.
For the remaining one, since it does not have the pre-defined
schema, we construct the schema by following the method
mentioned in [11]. Afterwards, by traversing the schema
network, we collect 10 meta-paths, where 5 meta-paths are
with lengths two and four respectively. Related information is
reported in Table II. For each dataset, we obtain top-5 meta-
paths of the highest frequencies (i.e., the number of meta-path
instances) from all meta-paths, then perform NIHINSCAN and
IHINSCAN for each meta-path, and report the average result
in the following experiment.

1×107

1×108

 0.4 0.5 0.6 0.7 0.8

NIHINScan NIHINScan+
ti

m
e

(u
s)

(a) TMDB

1×106

1×107

 0.4 0.5 0.6 0.7 0.8

NIHINScan NIHINScan+

ti
m

e
(u

s)

(b) IMDB

1×106

1×107

 0.4 0.5 0.6 0.7 0.8

NIHINScan NIHINScan+

ti
m

e
(u

s)

(c) DBLP

1×108

1×109

1×1010

 0.4 0.5 0.6 0.7 0.8

NIHINScan NIHINScan+

ti
m

e
(u

s)

(d) Foursquare

1×106

1×107

 0.4 0.5 0.6 0.7 0.8

NIHINScan NIHINScan+

ti
m

e
(u

s)

(e) DBPedia

Fig. 7. Performance of NIHINScan and NIHINScan+ when varying ε

1×107

1×108

 5 10 15 20 25

NIHINScan NIHINScan+

ti
m

e
(u

s)

(a) TMDB

1×106

1×107

 5 10 15 20 25

NIHINScan NIHINScan+

ti
m

e
(u

s)

(b) IMDB

1×106

1×107

 5 10 15 20 25

NIHINScan NIHINScan+

ti
m

e
(u

s)

(c) DBLP

1×108

1×109

1×1010

 5 10 15 20 25

NIHINScan NIHINScan+

ti
m

e
(u

s)

(d) Foursquare

1×106

1×107

 5 10 15 20 25

NIHINScan NIHINScan+

ti
m

e
(u

s)

(e) DBPedia

Fig. 8. Performance of NIHINScan and NIHINScan+ when varying µ

1×105

1×106

 0.4 0.5 0.6 0.7 0.8

IHINScan IHINScan+

ti
m

e
(u

s)

(a) TMDB

1×105

1×106

1×107

 0.4 0.5 0.6 0.7 0.8

IHINScan IHINScan+

ti
m

e
(u

s)

(b) IMDB

1×107

1×108

 0.4 0.5 0.6 0.7 0.8

IHINScan IHINScan+

ti
m

e
(u

s)

(c) DBLP

1×104

1×105

1×106

1×107

 0.4 0.5 0.6 0.7 0.8

IHINScan IHINScan+

ti
m

e
(u

s)

(d) Foursquare

1×106

1×107

1×108

1×109

 0.4 0.5 0.6 0.7 0.8

IHINScan IHINScan+

ti
m

e
(u

s)

(e) DBPedia

Fig. 9. Performance of IHINScan and IHINScan+ when varying ε

1×105

1×106

 3 5 7 9 11

IHINScan IHINScan+

ti
m

e
(u

s)

(a) TMDB

1×105

1×106

 3 5 7 9 11

IHINScan IHINScan+

ti
m

e
(u

s)

(b) IMDB

1×107

1×108

 3 5 7 9 11

IHINScan IHINScan+

ti
m

e
(u

s)

(c) DBLP

1×104

1×105

1×106

 3 5 7 9 11

IHINScan IHINScan+

ti
m

e
(u

s)

(d) Foursquare

1×106

1×107

 3 5 7 9 11

IHINScan IHINScan+

ti
m

e
(u

s)

(e) DBPedia

Fig. 10. Performance of IHINScan and IHINScan+ when varying µ

Algorithm. We evaluate the following algorithms:

• NIHINScan: Algorithm 1 (Section IV-A).
• NIHINScan+: Algorithm 2 (Section IV-B).
• IHINScan: Algorithm 3 (Section V-A).
• IHINScan+: Algorithm 5 (Section V-B).
• PathSimCluster: HINSCAN clustering model by replacing

Definition 3.6 with PathSim [10]

All algorithms are implemented in C++ and compiled with
GNU GCC 10.5.0 and -O3 level optimization. The time cost
of algorithms is measured as the amount of elapsed wall-
clock time during the execution. In the experiments, we first
evaluate the efficiency of the non-independent HINSCAN and
independent HINSCAN model, then the effectiveness of the
proposed algorithms. To evaluate the effectiveness of our
model, as SCAN [26] suggests that an ε value between 0.4 and
0.8 is normally sufficient to achieve a good clustering result
for SCAN, we set µ as 3 and tune the value of ε between 0.4
and 0.8 to obtain a good clustering result.

Exp-1: Performance of NIHINScan and NIHINScan+. In
this experiment, we evaluate the clustering performance of
NIHINScan and NIHINScan+ by varying ε and µ, respectively.
For ε, we vary its value from 0.4 to 0.8 in increments of 0.1.

For µ, we vary its values from 5 to 25 in increments of 5. The
running times are reported in Fig. 7 and Fig. 8.

The results show that NIHINScan+ runs much faster than
NIHINScan. This performance improvement is primarily due
to the optimized algorithm’s efficient use of explored vertex in-
formation, which minimizes redundant operations. Moreover,
as µ and ε vary, although the running time is shortened, the
change is very small. This is because, in the non-independent
HINSCAN model, constructing the meta-path transformed
graph often takes up a large part of the time, whereas pscan
takes relatively little time. Since varying µ or ε only affects
pscan, the overall running time remains largely unchanged.

Exp-2: Performance of IHINScan and IHINScan+. In this ex-
periment, we evaluate the clustering performance of IHINScan
and IHINScan+ by varying ε and µ. For ε, we vary its value
from 0.4 to 0.8 in increments of 0.1. For µ, we vary its values
from 5 to 25 in increments of 5. The processing times for all
five datasets are reported in Fig. 9 and Fig. 10.

The results indicate that IHINScan+ significantly outper-
forms IHINScan. This is mainly because findIMPN (Algorithm
4) is a time-consuming procedure, while IHINScan+ makes
full use of the information of pSCAN in the previous stage,
thereby avoiding a lot of unnecessary time for executing

findIMPN compared with IHINScan. In addition, as µ and
ε increase, both algorithms exhibit significant reductions in
running time. This is mainly because in the independent
HINSCAN model, the clustering phase takes much more time
duo to the time-consuming findIMPN procedure, and larger
value of µ or ε generally means more computations can be
pruned, and thus the whole running time is reduced.

Exp-3: Cohesiveness Analysis. To measure the cohesiveness,
we compute and compare the similarity and density of the
clusters on large datasets. Specifically, for each cluster in
NIHINSCAN and IHINSCAN, we compute the average sim-
ilarity value of the two vertices in each P-pair using metrics
PathCount [45], PathSim [10], and PCRW [46]. To measure
the density of clusters, we follow the density measure in [12],
which is the number of P-pairs over the number of vertices
(here, all the vertices are with the target type) as density.
We report the average results in Fig. 11. Clearly, the clusters
in IHINSCAN achieve higher similarity values than those of
NIHINSCAN. Therefore, IHINSCAN can obtain clusters with
vertices of higher similarity values. Besides, the clusters in
NIHINSCAN have a lower density than those of IHINSCAN.
Therefore, the IHINSCAN model can obtain clusters with
vertices that tend to be more densely connected.

100

101

102

103

IMDB DBLP DBPedia

NIHINSCAN IHINSCAN

P
at

h
 C

o
u

n
t

(a) PathCount

10-1

100

IMDB DBLP DBPedia

NIHINSCAN IHINSCAN

P
at
h
si
m

(b) Pathsim

10-2

10-1

100

IMDB DBLP DBPedia

NIHINSCAN IHINSCAN

P
C
R
W

(c) PCRW

100

101

102

IMDB DBLP DBPedia

NIHINSCAN IHINSCAN

D
en
si
ty

(d) Density

Fig. 11. Cohesiveness Analysis of NIHINSCAN and IHINSCAN

Exp-4: Case Study on DBLP Network. DBLP is a bib-
liographic HIN that captures the collaboration relationships
between researchers in the computer science. It comprises
three types of vertices: Author (A), Paper (P), and Topic
(T). Fig. 12 illustrates the HINSCAN clustering results on the
DBLP sub-network centered on “Philip S. Yu” (Fig. 12 (a)).

As shown in Fig. 12 (b), the non-independent HINSCAN
model categorizes the researchers into two clusters, corre-
sponding to the data mining and the machine learning areas.
“Jie Tang” is identified as a hub due to his close collaborations
with researchers in both fields, whereas “Jialu Liu” and
“Zhili Zhang” are considered outliers because they lack close
cooperation within their respective fields. The clustering result
of the independent HINSCAN model is shown in Fig. 12
(c). This model further identifies “Brandon Norick”, “Hasan
Cam”, and “Jianxin Wu” as outliers, in addition to those
identified in Fig. 12 (b). This is because, although these

(a) DBLP Sub-network

(b) Clustering result of non-independent HINSCAN

(c) Clustering result of independent HINSCAN

(d) Clustering result of PathSimCluster (ε = 0.52)

Fig. 12. Case Study on DBLP (µ = 3, ε = 0.64, P = (APA))

individuals have collaborated with many researchers in their
areas, these connections are typically established through one
or two papers, which do not constitute strong collabora-
tive relationships. Comparing the results in Fig. 12 (b) and
Fig. 12 (c), it is evident that the independent HINSCAN model
identifies denser clusters than the non-independent HINSCAN
model. Regarding PathSimCluster (Fig. 12 (c)), “Jie Tang”
is incorrectly identified as an outlier, which implies PathSim
is not a suitable alternative to structural similarity measure
regarding SCAN on HINs.

Exp-5: Case Study on IMDB Network. IMDB is a HIN
that records the relationships between movies and actors. It
contains three types of vertices, namely Actor (A), Movie
(M), and Type (T). Fig. 13 presents the HINSCAN clustering
results on the IMDB sub-network centered on “Stephen Chow”
(Fig. 13 (a)).

(a) IMDB Sub-network

(b) Clustering result of non-independent HINSCAN

(c) Clustering result of independent HINSCAN

Fig. 13. Case Study on IMDB (µ = 3, ε = 0.75, P = (AMA))

As shown in Fig. 13 (b), the non-independent HINSCAN
model divides the actors into two clusters, corresponding to
the comedy movie and the action movie genres. “Andy Lau”
is identified as a hub due to his close collaborations with
actors in both genres, whereas “JoJo Ngan” is considered an
outlier because he lacks close cooperation with other actors
in comedy movies. Fig. 13 (c) shows the clustering result
of the independent HINSCAN model, which reveals a denser
clustering outcome and additionally considers “Kong Lau” as
an outlier.

Exp-6: Case Study on Amazon Product Network. Amazon
Product Network is an HIN that records electronic products
and their manufacturers. The network contains four types of
vertices: Manufacture (M), Product (P), Subclass (S), and
Class (C). Fig. 14 shows the HINSCAN clustering results
on the Amazon Product sub-network centered on “SONY”
(Fig. 14 (a)).

As shown in Fig. 14 (b), the non-independent HINSCAN
model divides the manufacturer into two clusters, one for head-
phone manufacturers and the other for camera manufacturers.
“SONY” is identified as a hub because it produces a significant
number of both headphone and camera products. Fig. 14 (c)
presents the clustering results of the independent HINSCAN
model, revealing that “Apple” and “SAMSUNG” are consid-

(a) Amazon Product Sub-network

(b) Clustering result of non-independent HINSCAN

(c) Clustering result of independent HINSCAN

Fig. 14. Case Study on APDB (µ = 3, ε = 0.75, P = (MPSPM))

ered outliers, unlike in the non-independent HINSCAN model.
This distinction arises because, although both manufacturers
produce headphones and cameras, the variety of their products
is limited, resulting in weak connections established through
these products.

VII. CONCLUSION

In this paper, we explore the structural clustering prob-
lem in HINs. We first propose two models, non-independent
HINSCAN and independent HINSCAN, for structural cluster-
ing in HINs. For the non-independent HINSCAN, we first
propose a transformation-clustering framework and further
improve the performance by introducing a new search-join
transformation paradigm. For the independent HINSCAN, we
design an efficient algorithm to verify the independence re-
garding the path instances, and further improve the whole clus-
tering performance by introducing the lower bound and upper
bound. The experimental results on real datasets demonstrate
the effectiveness and efficiency of our proposed algorithms.

Acknowledge. Long Yuan is supported by National Key
R&D Program of China 2022YFF0712100, NSFC62472225.
Zi Chen is supported by NSFC6240071854, BK20241381,
JSTJ-2023-XH055.

REFERENCES

[1] S. E. Schaeffer, “Graph clustering,” Computer science
review, vol. 1, no. 1, pp. 27–64, 2007.

[2] M. Girvan and M. E. Newman, “Community structure
in social and biological networks,” Proceedings of the
national academy of sciences, vol. 99, no. 12, pp. 7821–
7826, 2002.

[3] W. Fan, R. Jin, M. Liu, P. Lu, X. Luo, R. Xu, Q. Yin,
W. Yu, and J. Zhou, “Application driven graph partition-
ing,” in Proceedings of SIGMOD, 2020, pp. 1765–1779.

[4] C. Biemann, “Chinese whispers-an efficient graph clus-
tering algorithm and its application to natural language
processing problems,” in Proceedings of TextGraphs: the
First Workshop on Graph Based Methods for Natural
Language Processing, 2006, pp. 73–80.

[5] V.-S. Martha, Z. Liu, L. Guo, Z. Su, Y. Ye, H. Fang,
D. Ding, W. Tong, and X. Xu, “Constructing a robust
protein-protein interaction network by integrating multi-
ple public databases,” in BMC bioinformatics, vol. 12,
no. 10, 2011, pp. 1–10.

[6] A. Bellogı́n and J. Parapar, “Using graph partitioning
techniques for neighbour selection in user-based collab-
orative filtering,” in Proceedings of RecSys, 2012, pp.
213–216.

[7] Y. Ding, M. Chen, Z. Liu, D. Ding, Y. Ye, M. Zhang,
R. Kelly, L. Guo, Z. Su, S. C. Harris et al., “atbionet–
an integrated network analysis tool for genomics and
biomarker discovery,” BMC genomics, vol. 13, no. 1, pp.
1–12, 2012.

[8] M. Schinas, S. Papadopoulos, G. Petkos, Y. Kompatsiaris,
and P. A. Mitkas, “Multimodal graph-based event de-
tection and summarization in social media streams,” in
Proceedings of SIGMM, 2015, pp. 189–192.

[9] M. Schinas, S. Papadopoulos, Y. Kompatsiaris, and P. A.
Mitkas, “Visual event summarization on social media us-
ing topic modelling and graph-based ranking algorithms,”
in Proceedings of ICMR, 2015, pp. 203–210.

[10] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim:
Meta path-based top-k similarity search in heterogeneous
information networks,” PVLDB, vol. 4, no. 11, pp. 992–
1003, 2011.

[11] Y. Zhou, Y. Fang, W. Luo, and Y. Ye, “Influential
community search over large heterogeneous information
networks,” Proc. VLDB Endow., vol. 16, no. 8, pp. 2047–
2060, 2023.

[12] Y. Yang, Y. Fang, X. Lin, and W. Zhang, “Effective
and efficient truss computation over large heterogeneous
information networks,” in Proceedings of ICDE, 2020,
pp. 901–912.

[13] Y. Sun, J. Han, C. C. Aggarwal, and N. V. Chawla,
“When will it happen?: relationship prediction in het-
erogeneous information networks,” in Proceedings of
WSDM, 2012, pp. 663–672.

[14] X. Yu, X. Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu,
B. Norick, and J. Han, “Recommendation in heteroge-

neous information networks with implicit user feedback,”
in Proceedings of RecSys, 2013, pp. 347–350.

[15] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou,
“Efficient (α, β)-core computation in bipartite graphs,”
VLDB J., vol. 29, no. 5, pp. 1075–1099, 2020.

[16] D. Ouyang, L. Yuan, L. Qin, L. Chang, Y. Zhang,
and X. Lin, “Efficient shortest path index maintenance
on dynamic road networks with theoretical guarantees,”
Proc. VLDB Endow., vol. 13, no. 5, pp. 602–615, 2020.

[17] L. Meng, Y. Shao, L. Yuan, L. Lai, P. Cheng, X. Li,
W. Yu, W. Zhang, X. Lin, and J. Zhou, “A survey of
distributed graph algorithms on massive graphs,” ACM
Computing Surveys, vol. 57, no. 2, pp. 1–39, 2024.

[18] Z. Chen, Y. Zhao, L. Yuan, X. Lin, and K. Wang,
“Index-based biclique percolation communities search on
bipartite graphs,” in Proceedings of ICDE. IEEE, 2023,
pp. 2699–2712.

[19] J. Zhang, L. Yuan, W. Li, L. Qin, Y. Zhang, and
W. Zhang, “Label-constrained shortest path query pro-
cessing on road networks,” The VLDB Journal, vol. 33,
no. 3, pp. 569–593, 2024.

[20] L. Yuan, X. Li, Z. Chen, X. Lin, X. Zhao, and W. Zhang,
“I/o efficient label-constrained reachability queries in
large graphs,” PVLDB, vol. 17, no. 10, pp. 2590–2602,
2024.

[21] L. Yuan, K. Hao, X. Lin, and W. Zhang, “Batch hop-
constrained st simple path query processing in large
graphs,” in Proceedings of ICDE. IEEE, 2024, pp. 2557–
2569.

[22] Q. Liu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “Truss-
based community search over large directed graphs,” in
Proceedings of SIGMOD, 2020, pp. 2183–2197.

[23] Y. Gao, X. Qin, B. Zheng, and G. Chen, “Efficient reverse
top-k boolean spatial keyword queries on road networks,”
IEEE TKDE, vol. 27, no. 5, pp. 1205–1218, 2015.

[24] Y. Gao, T. Zhang, L. Qiu, Q. Linghu, and G. Chen,
“Time-respecting flow graph pattern matching on tempo-
ral graphs,” IEEE TKDE, vol. 33, no. 10, pp. 3453–3467,
2021.

[25] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering
based on structural/attribute similarities,” Proceedings of
the VLDB Endowment, vol. 2, no. 1, pp. 718–729, 2009.

[26] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger,
“SCAN: a structural clustering algorithm for networks,”
in Proceedings of SIGKDD, 2007, pp. 824–833.

[27] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Scan++
efficient algorithm for finding clusters, hubs and outliers
on large-scale graphs,” PVLDB, vol. 8, no. 11, pp. 1178–
1189, 2015.

[28] L. Chang, W. Li, X. Lin, L. Qin, and W. Zhang, “pscan:
Fast and exact structural graph clustering,” in Proceed-
ings of ICDE, 2016, pp. 253–264.

[29] W. Zhao, G. Chen, and X. Xu, “Anyscan: An efficient
anytime framework with active learning for large-scale
network clustering,” in Proceedings of ICDM, 2017, pp.
665–674.

[30] T. R. Stovall, S. Kockara, and R. Avci, “GPUSCAN:
gpu-based parallel structural clustering algorithm for
networks,” IEEE TPDS, vol. 26, no. 12, pp. 3381–3393,
2015.

[31] L. Yuan, Z. Zhou, X. Lin, Z. Chen, X. Zhao, and
F. Zhang, “Gpuscan++: Eficient structural graph cluster-
ing on gpus,” CoRR, vol. abs/2311.12281, 2023.

[32] Q. Zhou and J. Wang, “Sparkscan: a structure similarity
clustering algorithm on spark,” in National Conference
on Big Data Technology and Applications, 2015, pp.
163–177.

[33] J. H. Seo and M. H. Kim, “pm-scan: an I/O efficient
structural clustering algorithm for large-scale graphs,” in
Proceedings of CIKM, 2017, pp. 2295–2298.

[34] Y. Che, S. Sun, and Q. Luo, “Parallelizing pruning-based
graph structural clustering,” in Proceedings of ICPP,
2018, pp. 77:1–77:10.

[35] D. Wen, L. Qin, Y. Zhang, L. Chang, and X. Lin,
“Efficient structural graph clustering: An index-based
approach,” PVLDB, vol. 11, no. 3, pp. 243–255, 2017.

[36] B. Ruan, J. Gan, H. Wu, and A. Wirth, “Dynamic struc-
tural clustering on graphs,” in Proceedings of SIGMOD,
2021, pp. 1491–1503.

[37] T. Tseng, L. Dhulipala, and J. Shun, “Parallel index-
based structural graph clustering and its approximation,”
in Proceedings of SIGMOD, 2021, pp. 1851–1864.

[38] L. Meng, L. Yuan, Z. Chen, X. Lin, and S. Yang,
“Index-based structural clustering on directed graphs,” in
Proceedings of ICDE, 2022, pp. 2831–2844.

[39] Y. Sun, Y. Yu, and J. Han, “Ranking-based clustering of
heterogeneous information networks with star network
schema,” in Proceedings of SIGKDD, 2009, pp. 797–806.

[40] Y. Huang and X. Gao, “Clustering on heterogeneous
networks,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 4, no. 3, pp. 213–233,
2014.

[41] X. Li, Y. Wu, M. Ester, B. Kao, X. Wang, and Y. Zheng,
“Semi-supervised clustering in attributed heterogeneous
information networks,” in Proceedings of World Wide
Web, 2017, pp. 1621–1629.

[42] X. Li, B. Kao, Z. Ren, and D. Yin, “Spectral clustering
in heterogeneous information networks,” in Proceedings
of AAAI, vol. 33, no. 01, 2019, pp. 4221–4228.

[43] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A
survey of heterogeneous information network analysis,”
IEEE TKDE, vol. 29, no. 1, pp. 17–37, 2016.

[44] L. Chang, W. Li, L. Qin, W. Zhang, and S. Yang, “pscan:
fast and exact structural graph clustering,” IEEE TKDE,
vol. 29, no. 2, pp. 387–401, 2017.

[45] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han,
“Co-author relationship prediction in heterogeneous bib-
liographic networks,” in 2011 International Conference
on Advances in Social Networks Analysis and Mining,
2011, pp. 121–128.

[46] N. Lao and W. W. Cohen, “Relational retrieval using a
combination of path-constrained random walks,” Mach.
Learn., vol. 81, no. 1, p. 53–67, Oct. 2010. [Online].
Available: https://doi.org/10.1007/s10994-010-5205-8

