
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

GAIA: A System for Interactive Analysis on
Distributed Graphs Using a High-Level Language

Zhengping Qian, Chenqiang Min, Longbin Lai, Yong Fang, Gaofeng Li,
Youyang Yao, Bingqing Lyu, Xiaoli Zhou, Zhimin Chen,

and Jingren Zhou, Alibaba Group
https://www.usenix.org/conference/nsdi21/presentation/qian-zhengping

GAIA: A System for Interactive Analysis on Distributed Graphs Using a
High-Level Language

Zhengping Qian
Alibaba Group

Chenqiang Min
Alibaba Group

Longbin Lai
Alibaba Group

Yong Fang
Alibaba Group

Gaofeng Li
Alibaba Group

Youyang Yao
Alibaba Group

Bingqing Lyu
Alibaba Group

Xiaoli Zhou
Alibaba Group

Zhimin Chen
Alibaba Group

Jingren Zhou
Alibaba Group

Abstract
GAIA (GrAph Interactive Analysis) is a distributed system
designed specifically to make it easy for a variety of users
to interactively analyze big graph data on large clusters at
low latency. It adopts a high-level language called Gremlin
for graph traversal, and provides automatic parallel execution.
In particular, we advocate a powerful new abstraction called
Scope that caters to the specific needs in this new computation
model to scale graph queries with complex dependencies
and runtime dynamics, while at the same time maintaining
the simple and concise programming model. GAIA has been
deployed in production clusters at Alibaba to support a variety
of business-critical scenarios. Extensive evaluations using
both benchmarks and real-world applications have validated
the effectiveness of the proposed techniques, which enables
GAIA to execute complex Gremlin traversal with orders-of-
magnitude better performance than existing high-performance
engines, and at much larger scales than recent state-of-the-art
Gremlin-enabled systems such as JanusGraph.

1 Introduction
Nowadays an increasing number of Internet applications gen-
erate large volume of data that are inherently connected in
various forms. Examples include data in social networks, e-
commerce transactions, and online payments. Such data are
naturally modeled as graphs to encode complex relationships
among entities with rich set of attributes. Unlike traditional
graph processing that requires programming for each individ-
ual task, it is now very common for domain experts, typically
non-technical users, to directly explore, examine, and present
graph data in an interactive environment in order to locate
specific or in-depth information in time.

As an example, consider the graph depicted in Figure 1,
which is a simplified version of a real query employed at
Alibaba for credit card fraud detection. By using a fake iden-
tifier, the “criminal” may obtain a short-term credit from a
bank (vertex 1). He/she tries to illegally cash out money by
forging a purchase (edge 2→ 3) at time t1 with the help of a
merchant (vertex 3). Once receiving payment (edge 1→ 3)

Figure 1: An example graph model for fraud detection.

from the bank (vertex 1) at time t2, the merchant tries to send
the money back (edges 3→ 4 and 4→ 2) to the “criminal”
via multiple accounts of a middle man (vertex 4) at time t3
and t4, respectively. This pattern eventually forms a cycle
(2→ 3→ 4 · · · → 2). Such fraudulent activities have become
one of the major issues for online payments, where the graph
could contain billions of vertices (e.g., users) and hundreds
of billions to trillions of edges (e.g., payments). In reality,
the entire fraudulent process can involve a complex chain of
transactions, through many entities, with various constraints,
which thus requires complex interactive analysis to identify.

Our goal is to make it easy for a variety of users to interac-
tively analyze big graph data on large clusters at low latency.
Achieving this goal requires a different distributed infrastruc-
ture than the popular batch-oriented big graph processing
systems [4, 15, 16, 26, 39, 49] in two aspects:
Programming Model. Existing systems, including the most
recent high-performance data engines such as Naiad [27],
demonstrate that it is possible to scale well-known graph algo-
rithms such as PageRank [5] and connected components [23]
to large clusters. Even so, their programming interfaces all
leave room for improvement for our target users, who typically
lack the background on distributed computing or program-
ming in general [13].
Memory Management. Existing systems1 typically base
their execution on the bulk synchronous parallel (BSP)
model [44], where the computation proceeds iteratively, and

1Here, we focus on the distributed graph analytical systems. Other systems
such as Neo4j, ZipG, and JanusGraph, etc. will be surveyed in Section 7.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 321

Q1: g.V(’account’).has(’id’,’2’).as(’s’)
.repeat(out(’transfer’).simplePath())
.times(k-1)
.where(out(’transfer’).as(’s’))
.path().limit(1)

Figure 2: An example Gremlin query for cycle detection.

in each iteration, all vertices in a graph will conduct the same
computation , and send any updates along their edges to drive
the computation of the next iteration. The BSP-based engines,
however, are not suitable for interactive graph queries because
of two reasons. Firstly, the interactive queries typically require
maintaining application state along with the traversal paths to
enable complex analysis [14, 37], which can grow exponen-
tially with the number of iterations, and cause memory crisis
in the underlying execution platforms. Secondly, in interactive
environments, there are typically multiple queries sharing the
limited amount of memory on the same set of machines, on
which (a large part of) the input graph is cached in memory
to provide required performance, making the above memory
crisis a more critical issue.

In this work, we exploit Gremlin [37] to provide a high-
level language for interactive graph queries. Gremlin is widely
adopted by leading graph system vendors [1, 6, 21, 29, 30],
which offers a flexible and expressive programming model
to enable non-technical users to succinctly express complex
traversal patterns in real-world applications. For example, one
can write the above fraud-detection query in just a couple of
lines using Gremlin, as shown in Figure 2 (which we explain
in Section 3). In contrast, even common operations like cycle
detection, which is a core part of the fraud-detection use case,
is tricky to implement in existing graph systems [16, 36].

The flexibility of Gremlin mainly stems from nested traver-
sal with dynamic control flow such as conditionals and loops.
While attempting to scale Gremlin queries, we are immedi-
ately confronted with the challenges of resolving fine-grained
data dependencies [10] with dynamic control flow [45]. There-
fore, existing Gremlin-enabled, large-scale systems either
adopt a sequential implementation in centralized query pro-
cessing with data being pulled from a remote storage (such as
JanusGraph [21] and Neptune [1]), or offer a limited subset
of the language constructs (such as the lack of nested loops
in [20]). In addition, GAIA must handle dynamics related to
variations in memory consumption in an interactive context.

In this paper, we present a system, GAIA, that takes on the
challenges of making Gremlin traversal work efficiently at
scale with low latency. In particular, GAIA makes the follow-
ing technical contributions.
• Scope Abstraction. We propose the Scope abstraction to

allow GAIA to dynamically track fine-grained data depen-
dencies in a Gremlin query. This enables Gremlin traversal
to be modeled as a dataflow graph for efficient parallel
execution with correctness guarantee.

• Bounded-Memory Execution. Leveraging the Scope ab-

Figure 3: GAIA system architecture.

straction, we are able to devise advanced optimizations in
parallel graph traversal, such as bounded-memory execution
and early-stop optimization, which lead to further runtime
improvement and memory saving.

• GAIA System. We have developed a full-fledged distributed
system, GAIA, and made it available at: https://github.
com/alibaba/GraphScope/tree/main/research/gaia. An
extended version of GAIA with enterprise features has been
deployed in real production clusters at Alibaba to support
a variety of business-critical scenarios. Extensive evalua-
tions using both benchmarks and real-world applications
have validated the effectiveness of the proposed techniques,
which enables GAIA to execute complex Gremlin traversal
with orders-of-magnitude better performance than existing
engines, and at much larger scales than the state-of-the-art
Gremlin-enabled systems such as JanusGraph.

2 System Architecture
GAIA is a full-fledged, in-production system for interactive
analysis on big graph data. Achieving this goal requires a
wide variety of components to interact, including software
for cluster management and distributed execution, language
constructs, and development tools. Due to space limit, we
highlight the three major layers that are sufficient to under-
stand this paper, namely application, execution, and storage,
in Figure 3, and give an overview to each of them below.

Apache TinkerPop [3] is an open framework for develop-
ing interactive graph applications using the Gremlin query
language [37]. GAIA leverages the project to supply the ap-
plication layer. GAIA implements the Gremlin Server [18]
interface so that the system can seamlessly interact with the
TinkerPop ecosystem, including development tools such as
Gremlin Console [17] and language wrappers such as Java
and Python.

The GAIA execution runtime provides automatic support
for efficient execution of Gremlin queries at scale, which con-
stitutes the main contribution of this paper. Each query is
compiled by the front-end service into a distributed execu-
tion plan that is partitioned across multiple compute nodes
for parallel execution. Each partition runs on a separate com-
pute node, managed by a local executor, that schedules and
executes computation on a multi-core server.

The storage layer maintains an input graph that is hash-
partitioned across a cluster, with each vertex being placed

322 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/alibaba/GraphScope/tree/main/research/gaia
https://github.com/alibaba/GraphScope/tree/main/research/gaia

Figure 4: An example “e-commerce” property graph.

together with its adjacent (both incoming and outgoing) edges
and their attributes. In this paper, we assume that the stor-
age is coupled with the execution runtime for simplicity, that
is each local executor holds a separate graph partition. In
production, we implement a distributed graph storage with
index and cache features, decoupled from the execution, that
supports real-time updates with snapshot isolation (similar to
Kineograph [11]), which allows users to query fast-changing
graphs with consistency guarantee. Furthermore, GAIA pro-
vides multiple options for fault tolerance using checkpoints,
replication, and/or relying on a Cloud storage. Production
details are outside the scope of this paper.

3 Programming with GAIA
GAIA is designed to faithfully preserve the programming
model of TinkerPop [3], and as a result it can be used to scale
any existing TinkerPop applications to large compute clusters
without any modification. In this section, we provide a high-
level view of the programming model, highlighting the key
concepts including the data model and query language.

Gremlin [37] enables users to define ad-hoc traversals on
property graphs [2]. A property graph is a directed graph in
which vertices and edges can have a set of properties. Every
entity (vertex or edge) is identified by a unique identifier (ID),
and has a (label) indicating its type or role. Each property is
a key-value pair with combination of entity ID and property
name as the key. Figure 4 shows an example property graph.
It contains user, product, and address vertices connected by
order, deliver, belongs_to, and home_of edges. A path fol-
lowing vertices 1→ 2→ 3, shown as the dotted line, indicates
that a buyer “Tom” ordered a product “gift” offered by a seller
“Jack”, with a price of “$99”.

In a Gremlin traversal, a set of traversers walk a graph
according to particular user-provided instructions, and the
result of the traversal is the collection of all halted traversers.
A traverser T = (l,P)2 is the basic unit of data processed by a
Gremlin engine. Each traverser maintains a location l that is a
reference to the current vertex, edge or property being visited,
and (optionally) the path history P. For example, consider a
traversal which starts from vertex 1 (with only one traverser at
the location of vertex 1), follows outgoing edges, and reaches
its 2-hop neighbors in Figure 4. A possible intermediate result

2In [37], a traverser is modelled as a 6-tuple set, while we include neces-
sary elements to understand this paper.

can be a collection of a single traverser located at vertex 2 with
the corresponding path history. The final result is a collection
of two traversers, located at vertex 3 and 4, respectively, with
different paths, 1→ 2→ 3 and 1→ 2→ 4.

Nested traversal is another key concept in Gremlin. It al-
lows a traversal to be embedded within another operator, and
used as a function to be invoked by the enclosing operator
for processing input. The role and signature of the function
are determined by the type of the enclosing operator. For ex-
ample, a nested traversal within the where operator acts as a
predicate function for conditional filters, while that within the
select or order operator maps each traverser to the output or
ordering key for sorting the output, respectively.

Nested traversal is also critical to the support for loops,
which are expressed using a pair of the repeat and
until/times operators. A nested traversal within the repeat

operator will be looped over until the given break predicate is
satisfied. The predicate (or termination condition) is defined
within the until operator, applied to each output traverser
separately from each iteration. The times operator can also
terminate a loop after a fixed number of k iterations.

Example 3.1. Figure 2 shows a Gremlin query Q1 for the
motivating example in Section 1 that tries to find cyclic paths
of length k, starting from a given account. First, the source op-
erator V (with the has filter) returns all the account vertices
with an identifier of “2”. The as operator is a modulator that
does not change the input collection of traversers but intro-
duces a name (s in this case) for later references. Second, it
traverses the outgoing transfer edges for exact k−1 times,
skipping any repeated vertices (by the simplePath opera-
tor). Third, the where operator checks if the starting vertex
s can be reached by one more step, that is, whether a cycle
of length k is formed. Finally, for qualifying traversers, the
path operator returns the full path information. The limit
operator at the end indicates only one such result is needed.

4 Compilation of Gremlin
GAIA compiles a Gremlin query into a dataflow graph, where
each vertex (operator) performs a local computation on input
streams from its incoming edges and produces output streams
to its outgoing edges, and can optionally maintain a state. The
input graph is modeled as a read-only state shared by all the
dataflow operators. We map each Gremlin operator onto a
dataflow operator, and the collections of traversers as data
streams. In the following, we will use the term traverser inter-
changeably with data. Figure 5(b) shows an example dataflow
graph corresponding to the following Gremlin query (Q2) that
conducts a 2-hop traversal followed by an aggregation that
counts the total number of traversed paths.

Q2: g.V(2).out().out().count()

We introduce source operators as special drivers that gen-
erate output only from the input graph to drive the rest of the

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 323

Figure 5: Dataflow graph and execution for query Q2.

dataflow computation (e.g., V(2)). We use sink operators to
denote those that generate output streams for the computa-
tion to be consumed elsewhere (e.g., count). Since Gremlin
imposes no restrictions on the execution order of traversers,
we can pack a segment of traversers to a same operator into
a batched input and schedule the computation at a coarse
granularity for efficient execution.

To preserve the operator semantics for barriers, we insert
an End-of-Stream (or EOS) marker at the end of the output
streams of each source operators, as a special punctuation
event that asserts the completeness of output. The EOS mark-
ers will be propagated through the dataflow, layer by layer,
so that any downstream operators can be notified on the com-
pleteness of their inputs by waiting to collect those markers.

Example 4.1. Figure 5(c) illustrates the progression of the
dataflow execution of Q2 against the input graph in Fig-
ure 5(a). o1 generates a data stream of {(v2, /0), EOS} as
output, where v2 denotes the vertex with ID 2. Note that the
path history has been pruned (and omitted later) as the down-
stream operators do not need it. o2 consumes v2, generates
output {v3, v4}, and finally propagates EOS to its output. Sub-
sequently, o3 outputs {v1, v2} after consuming v3, and {v3,
EOS} for the rest of its input. Finally, o4 outputs the counting
of {3} - it can do so as the EOS marker has been received.
The dataflow thus terminates.

4.1 Challenges in Compiling Nested Traversal
Many of the salient features of Gremlin such as dynamic con-
trol flow rely on nested traversal, which introduces additional
complexity to the above design. Let’s look into another query
Q3 slightly amended from Q2, in which a segment of opera-
tors (out().count()) is nested within a select-projection.

Q3: g.V(2).out()
.select(’neighbor_count’)
.by(out().count())

Given a set of vertices N(v2) as the outgoing neighbors of
a vertex v2, the query asks to count the number of k-hop paths
starting from each vertex u ∈ N(v2) (let k = 1 for simplicity),
and output pairs of (u, # paths starting from u). In this ex-
ample, each input traverser that represents a vertex of N(v2)
does its own computation (of the counting of paths), namely

Figure 6: Dataflow and scope example: the filled circle high-
lights a scope with input stream I and output stream O.

at a fine granularity. In other words, the count operation has
to be executed separately for each vertex u ∈ N(v2).

We define a context as an execution environment for a
dataflow that includes a unique (possibly empty) state for
its computation. Without nested traversal (and/or dynamic
control flow), all computation of each Gremlin operator, and
the whole dataflow, can run in a single context. For example,
in query Q2, only count maintains a state (for partial counting)
- there is only one such state needed to count all traversed
paths. With nested traversal, this property no longer holds
as a stateful operator in a nested traversal can dynamically
demand the separation of contexts. For example, in query Q3,
due to the semantics of select, there must be an individual
state (context) maintained for each vertex u ∈ N(v2) in order
to produce correct results.

One may argue that the above example is not so hard to
tackle. However, this is just a simplest example involving
sub-traversals in Gremlin. Such context separation is also
important in dynamic control flow such as loop, in which
each iteration must run separately from another. One can even
encounter sub-traversals involved with arbitrary combination
of complex structuring constructs, making the system design
uncontrollably complex. In addition, the number of separate
contexts required for the correct execution of a single Grem-
lin traversal can be proportional to that of the intermediate
traversers (e.g., select in query Q3), which can be of millions
to billions in our case. While it is possible to dynamically
create physical contexts as in [45], doing so at such a fine
granularity for Gremlin is clearly infeasible in practice.

4.2 The Scope Abstraction
To address the issues posted by Gremlin traversal, we propose
the Scope abstraction to help emancipate the system from the
need of maintaining context information.We first define the
concept of a Scope.

Definition 4.1. A Scope is a subgraph in a dataflow (sub-
dataflow) that satisfies the following condition: for any op-
erators o1 and o2 in the sub-dataflow and any operator o in
the dataflow, o must also be in the sub-dataflow if o is on a
directed path from o1 to o2.

A Scope has the same logical structure (and function) as
a dataflow operator, which can thus be reduced to one vir-

324 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tual “operator” in the dataflow graph. Naturally, we refer
to a Scope context, as the context of its enclosed operator.
It is allowed that a Scope Sp contains another sub-dataflow
as a nested Scope Sc as long as it satisfies the definition of
Definition 4.1. Sp is called the parent Scope of Sc, and Sc is
accordingly the child Scope of Sp. The whole dataflow is a
special Scope that we call as root Scope. The dataflow re-
garding the nested relationships of Scopes naturally form a
hierarchical structure.

Example 4.2. In the dataflow graph as shown in Figure 6,
the sub-dataflow comprised of o2, o3, o4 and o5 (as well as
all their edges) is a Scope Sc (as highlighted) and can be
reduced to one operator with I as its input stream, and O as
its output stream. The whole dataflow is the root Scope, which
is the parent Scope of Sc.

As we mentioned earlier, it is costly to create physical
dataflow operators as in [45] for a Gremlin query that poten-
tially requires a separate context for each data item. We there-
fore propose the Scope abstraction to handle the separation
of execution contexts in a Scope in a more light-weighted
manner. A Scope abstraction consists of three primitives,
namely Enter, Exit, and GoTo, and the interface of Scope pol-
icy. Specifically, Enter forwards a data item from a parent
Scope3 to a child Scope, while Exit sends data item back to a
parent Scope. As GoTo is primarily used for loop control flow,
we will introduce it in Section 4.3.

The Scope policy is installed by the compiler on each Enter

and GoTo primitives to fulfil different context-switch mecha-
nisms. Logically, we use a sequence number as context iden-
tifier to identify an execution context in a Scope, the Scope
policy contains the following interfaces (their implementa-
tions are in Section 4.4):

• CreateOrOpen(Data:e,CtxID:s): To create a new isolated
context for the input data e, or open an existing context
uniquely identified by s.

• GetContext(Data:e): To obtain the context identifier of the
data e.

• Complete(Data:e,CtxID:s): To mark that there will be no
more data for the context of s, after receiving e.

As an example, we present a built-in scope policy called
CONTEXT_PER_ENTRY (more policies will be introduced as fol-
lows). CONTEXT_PER_ENTRY creates a new context for each
input data. Let seq be a sequence number, initialized to 0.
For each input e, the CONTEXT_PER_ENTRY policy first applies
CreateOrOpen(e,seq) to create a new context for e. It then
immediately calls Complete(e,seq) to indicate that there will
be no more data for the context of seq. Finally, the policy
increments seq by 1 such that any future data will enter a
different context. In the following, we will detail how the
Scope abstraction facilitates the compilation of a Gremlin
query with nested traversals.

3It is more precisely a context of the Scope, while we refer to it as Scope
for short.

Figure 7: An example Scope execution with separate contexts.

4.3 Compilation of Gremlin using Scope
Compilation of a Gremlin query without dynamic control
flow or nested traversal is as similar to that in existing sys-
tems [41, 46, 47], we do not elaborate on it further. Both
dynamic control flow and nested traversal introduce sub-
traversals in a Gremlin query. GAIA compiles each such sub-
traversal into a Scope enclosed by a pair of Enter and Exit

primitives (can be multiple of them nested within each other).
The Scope abstraction handles the context separation in a
unified way. Due to space limit, this section presents the com-
pilation process of three representative Gremlin operators
(select, where, and repeat) to highlight the common pattern
of using the Scope abstraction.

Example 4.3. Figure 7 illustrates an example that GAIA
compiles the query Q3 (Section 4.1) into a dataflow using
Scope, in which the select-projection introduces a Scope
that encloses the sub-traversal of out().count(). As there
requires a separate execution context for each data entering
the Scope, GAIA installs a CONTEXT_PER_ENTRY policy on
the Enter. This way, each data can drive their own compu-
tation of out().count() in isolation, without concerning
about the context separation as posted in Section 4.1.

Dynamic control flow such as where-conditionals and
repeat-loops introduce addition complexity, as presented in
the following query:

Q4: g.V(2).as(’s’)
.repeat(out().simplePath())
.times(k-1)
.where(out().eq(’s’))
.path().limit(1)

We next focus on the compilation of these constructs, in-
spired by TensorFlow [45]. However, unlike [45], they can be
applied to a much finer granularity of each individual traversal
path in Gremlin. This is enabled by the Scope abstraction. We
further introduce the following primitive operators:

• Copy takes in a data e and outputs two identical data.
• Switch takes a data from its input and a boolean value p,

and forwards the data to either the True branch of dt or
False branch of d f , based on the predicate p.

• Merge accepts two input streams and merges them into one
single output stream.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 325

Figure 8: Compilation of control-flow constructs.

Conditional. Figure 8(a) shows an example of compiling a
where-conditional. Conceptually, the where statement deter-
mines whether a data, while arriving at where, will continue
to traverse, if the sub-traversal is evaluated to be true, or be
abandoned otherwise. As the conditional check happens for
each individual data, a CONTEXT_PER_ENTRY policy will be in-
stalled by the compiler in the Enter while entering the where

Scope. Each data enters the Copy, where one data goes into
the predicate body to drive the sub-traversal, and the other
data goes to the Switch. Based on returned boolean value of
the predicate body, the data with a True predicate will get out
of the Scope via the True branch, and the data with a False

predicate will go via the False branch (and get discarded if
not further used).
Loop. We first introduce other two built-in Scope policies.

• SINGLE_CONTEXT policy calls CreateOrOpen(e,0) for each
data e indicating that they all enter one context of 0. It calls
Complete(e,0), if and only if e = EOS.

• GET_AND_INC policy first calls GetContext(e) to obtain the
context of e as seq. Then it increases seq by 1 as seq′,
and calls CreateOrOpen(e,seq′) to enter the new context. It
finally calls Complete(e,seq′), if and only if e = EOS.

Figure 8(b) illustrates the compilation of repeat-loop. The
compiler installs the SINGLE_CONTEXT policy on the Enter

that forwards a data into the loop Scope, with a new con-
text of 0, or, in the 0-th iteration. Additionally, it installs
the GET_AND_INC policy on the GoTo. The GoTo primitive, as
mentioned earlier in Section 4.2, is used to explicitly switch
the context of data. Specifically in a loop, it leverages the
GET_AND_INC policy to allow any data produced from current
loop context to get switched to the next iteration. Naturally,
the context identifier can now serve as the loop count. The
loop body compiles any sub-traversal that will be run itera-
tively. Eventually, the data in the loop context will go though
a conditional Scope as we have discussed above. This condi-
tional Scope checks whether a termination condition is satis-
fied (such as arriving at the maximum iteration by times, or
traversing to a certain vertex by until). The data with a False

predicate is able to exit the loop, while the data with a True

predicate will proceed to the next iteration as a feedback data

stream via the GoTo, updating its context via the GET_AND_INC

policy to indicate entering the next iteration. Note that a con-
text must have been created or opened for each data e in a
Scope, and thus GetContext(e) can be safely called. The feed-
back data will be eventually merged back to the input (of the
sub-traversal) to drive the computation of next iteration.

4.4 Implementing Scope
It is challenging to implement Scope both correctly and effi-
ciently. While it is always possible to create physical dataflow
operators for each separate context, due to potentially un-
bounded number of such contexts in graph traversals (as de-
scribed in Section 4.1), this is clearly infeasible in practice.
GAIA instead dynamically tracks dependencies among input,
output, and internal states for each operator in a dataflow.

GAIA labels each traverser with a tag, which is a k-ary
vector of context identifiers, denoted as T = [s1,s2, . . . ,sk]

4,
where the dimension indicates the level of potentially nested
Scope. The root Scope is by default identified by a tag of [].
We define the following operations on a tag T :

T [∧] To get the last context identifier of T .
T [∧→ s] To replace the last context identifier of T

with s.
T [+1] To increase the dimension of T by 1, with

the new slot filled with a /0.
T [−1] To reduce the dimension of T by 1.

From now, each data e will be tagged as (T ;e), which al-
lows the system to be aware of the Scope and its different
contexts. The primitives of Enter and Exit, and the interface
functions in the Scope abstraction will explicitly modify the
tag, as follows.

• Enter increases the dimension of the tag by 1 to indicate
entering a Scope, as (T [+1];e).

• Exit reduces the dimension of the tag by 1 to indicate
leaving a Scope, as (T [−1];e).

• CreateOrOpen((T ;e),s) return a newly tagged data with the
last context identifier of T replaced as s, as (T [∧→ s];e).

• GetContext((T ;e)) returns the last context identifier of T ,
as T [∧].

• Complete((T ;e),s) produces a tagged EOS marker to indi-
cate the end of current context s, as (T [∧→ s];EOS).

Such data tagging is automatically handled by GAIA sys-
tem, and is transparent to any user interface. For the primitive
operators introduced in Section 4.3, they do not need to worry
about tags, and hence can still treat the tagged data as a “nor-
mal” data. For a computing operator o (with the logic fo) in
Gremlin, such as out and count, GAIA handles the computa-
tion as follows. It first extracts the actual data e, and apply the
computation logic fo(e). The computation will generate a set

4Such tagging appears to be similar to the timestamps in Naiad [27], but
it is used for dependency tracking in GAIA, without any physical meaning
of event time as in Naiad [27].

326 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: An execution with dynamic dependency tracking.

of traversers Ω, and potentially modify a state τ of the opera-
tor. Then for all e′ ∈Ω, GAIA re-tags e′ with T and sends it to
the output stream. To handle any stateful computation, GAIA
maintains an associated map with tag T as the key and state
τ as the value, so that it can operate on the right state from
different execution contexts transparently, as if the operator
runs in isolation.

Example 4.4. Figure 9 shows the above process for the
dataflow in Figure 7. Initially, it accepts and computes inputs
{([];v3), ([];v4)} (path history is omitted) from the parent
Scope context. The Enter of the select Scope turns the
inputs to o3 as {([0];v3), ([0];EOS), ([1];v4), ([1];EOS)} ac-
cording to the CONTEXT_PER_ENTRY policy. Next, o3 outputs
{([0];v1), ([0];v2), ([1];v3)}. Note that EOS is omitted for
now. o4 can then maintain a hash table with the tag as key
and the partial count as value. Finally, while o4 receives the
EOS for the corresponding context, it can output the results as
{([0];2), [[1];1]}. The Exit restores the tags from o4’s output
and generates {([];2), ([];1)}.

Handling EOS Markers. An EOS marker can be introduced
by both the source operator and the Complete function in-
side a Scope (Enter). An EOS marker can go through any
computing operator without doing any de-facto computation,
while it must be carefully handled in the primitive operators,
especially Enter and Exit with the presence of Scopes.

Given a Scope, we call an EOS marker produced from out-
side the Scope as external EOS, and an EOS produced inside
the Scope as internal EOS. An external EOS marks the termi-
nation of a context in the parent Scope, and must exit back
to the parent Scope. Conversely, an internal EOS fulfills the
same purpose only in the current Scope, and should only be
propagated within. It is thus critical to differentiate the seman-
tics of the EOS markers in a Scope. To do so, we implement
the policy installed on the Enter to not call CreateOrOpen on
the external EOS marker, which can then be recognized as a
/0 context. In the Exit, GAIA only allows the external EOS to
leave the Scope.

Recall that Switch is another primitive operator used in con-
ditional and loop Scope that delivers a data to either branch
based on the predicate. The EOS marker, however, will always
be propagated to both branches. In the loop Scope, the exter-

Figure 10: Distributed execution on two compute nodes.

nal EOS, once propagating through the nested conditional,
will be held in the Exit of loop, and only released after the
system verifies that all loop contexts terminate (using known
techniques [45]). For the internal EOS, it will be tagged as
the other data in the GoTo. As long as any data with a tag T
is propagated to the next iteration, the EOS with T must also
be propagated over to GoTo (meaning that the associated loop
context has not terminated); otherwise, it will leave the loop
Scope and get discarded.

5 Distributed Execution
GAIA runs queries via a set of worker processors in a shared-
nothing cluster, where each worker executes a fragment of
the computation. For each query, GAIA first compiles it into
a dataflow graph using the techniques in Section 4, then it
partitions the source operator in the dataflow according to
the input graph partition, with the segment of operators that
follow the source replicated across the set of workers. A local
executor manages the computation on each worker by schedul-
ing the operators to run. It starts from the source operator and
repeatedly executes the following ready operators. Here, an
operator is ready if all its inputs are available to consume. For
now, GAIA requires the users to manually specify a degree of
parallelism (DOP) for a query upon submission. We leave it
as an interesting future work to automatically derive the DOP.
According to the DOP, the local executor parallelizes the op-
erators to execute on the multiple CPU cores, as illustrated
in Figure 10. While GAIA can support multiple concurrent
queries, we focus on single query processing in this paper.

5.1 Bounded-Memory Execution
Graph traversal can produce paths of arbitrary length, leading
to memory usage growing exponentially with the number of
hops. Although it is very common for Gremlin queries to
terminate with a top-k constraint and/or aggregate operation,
such an explosion of intermediate results can often lead to
memory crisis, especially in an interactive environment with
limited memory configuration. While several techniques exist
for alleviating memory scarcity in dataflow execution, such as
backpressure and memory swapping, they cannot be directly

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 327

applied in GAIA due to potential deadlocks [25, 31] and/or
high (disk I/O) latency. To ensure bounded-memory execu-
tion without sacrificing performance (parallelism), the local
executor in GAIA employs a new mechanism for dataflow
execution, called dynamic scheduling.
Dynamic Scheduling. For each operator, GAIA packs a seg-
ment of consecutive traversers in a stream into a single batch,
and such a batch constitutes the finest data granularity for com-
munication and computation. A task can be logically viewed
as the combination of an operator and a batch of data to be
computed. GAIA dynamically creates tasks corresponding to
each operator when there is one or more batches available
from all its inputs5. The local executor maintains all the tasks
in a same scheduling queue to share resources.

We implement our own memory allocator that will report
the total amount of memory used (for each query) so that
the executor can watch the memory consumption. When it
reaches a predefined threshold (high-watermark), the execu-
tor stops scheduling more tasks from the queue, except for
those corresponding to the sink operators that will be sent to
the clients. The executor resumes scheduling tasks when the
memory consumption drops below another predefined thresh-
old (low-watermark). It is possible that a single task (with a
high-degree vertex) execution may produce too much output
to exhaust the memory. To avoid this issue, we suspend a task
when its output data exceeds a capacity bound, and resume it
after the data has been consumed.

Data shuffling between two machines may introduce depen-
dencies between their task scheduling. For example, a task can
cause another executor to run into low memory, if it sends too
much data to that executor. In this case, the sender task will
be suspended until the receiver executor recovers from low
memory. We implement a mechanism to send backpressure
signals across network to allow cooperation of schedulers.

An execution of a dataflow graph with cyclic edges can
potentially deadlock using bounded memory. In the specific
context of graph traversal, this can be caused either by infinite
loops such as traversing along a cyclic path without termina-
tion, or inappropriate scheduling such as buffer exhausted by
a BFS-prioritized traversing (will be discussed later) that pre-
vents downstream or sink operators from being scheduled to
drain the buffered intermediate data. To address infinite loops,
we apply a configurable limit N of the maximum number of
iterations allowed in a loop (with a small buffer reserved for
each iteration), and let the GoTo declare a deadlock when the
limit N is reached. Once a deadlock is detected, the corre-
sponding query is terminated with a clear error message. To
handle inappropriate scheduling, we adopt a hybrid traversal
strategy as described below.
Hybrid Traversal Strategy. As mentioned above, the mem-
ory crisis mainly stems from the intermediate paths, and
therefore the traversal strategies can greatly impact the

5The only exception is Merge, which is ready to run when data become
available at any of its inputs.

Figure 11: A loop execution with wasted computation.

memory usage. There are two typical traversal strategies,
namely (breadth-first-search) BFS-like traversal and (depth-
like-search) DFS-like traversal. BFS-like traversal can better
utilize parallelism, while it may produce data all at once that
drives high the memory usage. On the contrary, DFS-like
traversal tends to consume much less memory, while it may
suffer from low parallelism. With this observation, we propose
to allow the local executor to schedule tasks with priorities
according to its topological order (i.e. the traversal depth) in
the dataflow. Specifically, the executor can schedule the tasks
located at the same order with higher priority for a BFS-like
traversal, and prioritize those at downstream to follow a DFS-
like traversal. Note that such strategy works naively for all
the tasks but those in a loop context, where the traversers
from different iterations may be executed in the same task. To
resolve this, we let the operator’s buffer reorder (and group)
traversers by their iteration markers (obtained from the con-
text identifier) before packing them into batches. This makes
sure that we can prioritize tasks unambiguously even within
loops. To balance the memory usage with the performance
(parallelism), GAIA by default adopts a hybrid traversal strat-
egy, that is, it uses BFS-prioritized scheduling as it has better
opportunities for parallelization, and automatically switches
to DFS-prioritized in case that the current operator arrives at
the memory bound.

5.2 Early-Stop Optimization
Traversing all candidate paths fully is often unnecessary, espe-
cially for interactive queries with dynamic conditions running
on diverse input graphs. For example, in the following query
Q5, only the first k results are needed.

Q5: g.V(2).repeat(out().simplePath())
.times(4).path()
.limit(k)

This leads to an interesting tradeoff between parallel traver-
sal and wasted computation, as further illustrated in Figure 11.
It shows an example run of query Q5 with k = 1. The circle
denotes the traversal specified by the repeat-loop. Assume
we have enough computation resource (CPU cores), the paths
can be explored in a fully parallel fashion. However, once a
4-hop path is found, all the remaining parallel traversal will
be no longer required.

328 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

For real-world queries on large graph data, such wasted
computation can be hidden deeply in nested traversals (e.g., a
predicate that can be evaluated early from partial inputs) and
significantly impact query performance. While avoiding such
wastage is straightforward in a sequential implementation, it
is challenging to do so for a fully-parallel execution.

Normally, the execution of a particular context terminates
when the EOS markers arrive at all the exits (from this con-
text), including any Exit or GoTo. In the above example, an
operator (e.g., limit) can actually terminates early after pro-
ducing k outputs, before receiving any input EOS markers.
GAIA further allows Complete((T ;e),s) to be called by any
operators in a Scope to explicitly produce a tagged EOS
marker (for current context s) to indicate the completeness
of its output (after sending e downstream). However, this
alone does not prevent upstream computation from continu-
ing producing output that is no longer required and thus the
corresponding computation is wasted.

To minimize such wastage, when a Complete is issued by
an operator, it creates a cancellation token associated with
the same context tag that is sent backward along input edges
to its upstream operators within the Scope. The token serves
as a signal for receiving operators to clear any unsent output
data and immediately insert an EOS marker for the particular
output stream. If such a token has been received from all
output streams, the operator further propagates it to its own
upstream operators, recursively, until it encounters the Enter

for the same Scope. Such cancellation notification is imple-
mented at a system level by GAIA. Due to space limit, We
omit further details on propagation of cancellation tokens in
any child Scope and/or through the GoTo to its dependent, pre-
vious contexts. We validate that such early-stop optimization
can significantly improve query performance in Section 6.

6 Evaluation

6.1 Experimental Setup
Datasets. We generate 5 graph datasets as shown in Table 1
for experiments using Linked Data Benchmark Council (or
LDBC) data generator [12], where Gx denotes that the graph
is generated with scale= x. We use G300 as the default dataset
if not otherwise specified. Note that G1000 is the largest data
graph that LDBC can generate.

Table 1: The LDBC datasets.

Name # vertices # edges Agg. Mem.
G1 3M 17M 4GB
G30 89M 541M 40GB
G100 283M 1,754M 156GB
G300 817M 5,269M 597GB
G1000 2,687M 17,789M 1,960GB

Queries. For comparison, we consider graph queries from the
Social Network Benchmark defined by LDBC [12] to model

industrial use cases on a social network akin to Facebook.
We choose 10 out of 14 complex read queries (denoted as
CR-1 . . .14) from LDBC’s Interactive Workload6.

In addition, the cycle-detection query Q6 is considered:
given m (by default 10) starting nodes in V , it traverses from
V via at most k (by default 4) hops, and returns those vertices
among V that can form at least n (by default 10) cycles along
the traversal. We modify the query based on the production
query as shown in Figure 1 to align with the LDBC data.
This query also shows the functionality of prepared statement
(“Discussion”, Section 4.3) enabled by the Scope abstraction,
which wraps multiple starting vertices into one query.

The driver client provided by LDBC is modified to run
each of the queries 20 times from a set of randomly selected
parameters. Average query latency is reported.
Configurations. In the following experiments, we by default
warm up all the systems to keep the computation-relevant
data in memory. We do this to focus on benchmarking the
computing engine instead of storage access.

All the queries have been implemented using Gremlin for
all systems except Neo4j (using Cypher officially), with cor-
rectness cross-verified. The compiling time of these queries in
our system is typically within 1ms, which is negligibly small
compared to the query runtime, and will be ignored thereafter.
We allow each query to run for at most 1 hour, and mark an
OT if a query can not terminate in time. We manually con-
figure the degree of parallelism (DOP) while running each
query in GAIA. In the following, we denote DOP = [x]× [y]
for running y threads in x machines.

We compare GAIA with the systems in Table 2. While Nep-
tune [1] is another popular Gremlin-enabled graph database,
we do not benchmark it as it is only available in AWS, and
its performance is similar to JanusGraph as shown in [42].
Timely [43] is the publicly available implementation of Na-
iad [27]. Plato [32] is an open-sourced implementation of
Gemini [49] (Gemini does not support (de)serializing vector-
like data for sending paths across network). We implement
GAIA using Rust [38], and are working on open-sourcing the
engine and storage.

Table 2: The evaluated systems.

System Version
TinkerGraph [3] 3.4.1
Neo4j-Community [29] 3.5.8
OrientDB [30] tp3-3.0.15
JanusGraph [21] 0.4.0-hadoop2
Timely [43] latest release in Github
Plato [32] latest release in Github

We deploy a cluster of up to 16 machines, and each machine
configures one 24-core Itel(R) Xeon(R) Platinum 8163 CPUs

6The remaining queries are either too simple (such as simple point-lookup
queries) or rely on user-defined logic (such as CR-4,10,13,14), which is not
supported by other popular TinkerPop-based systems.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 329

 5

 10

 15

 20

 25

2×4 4×4 8×4 16×4

L
at

en
cy

 (
se

c)

CR-3
CR-5

CR-6
CR-9

(a) Scale-out: large queries.

10
1

10
2

10
3

10
4

2×4 4×4 8×4 16×4

L
at

en
cy

 (
m

se
c)

CR-1
CR-2
CR-7

CR-8
CR-11
CR-12

(b) Scale-out: small queries.

 5

 10

 15

 20

 25

4×2 4×4 4×8 4×16

L
at

en
cy

 (
se

c)

(c) Scale-up: large queries.

10
1

10
2

10
3

10
4

4×2 4×4 4×8 4×16

L
at

en
cy

 (
m

se
c)

(d) Scale-up: small queries.

 5

 10

 15

 20

G
30

G
100

G
300

G
1000

L
at

en
cy

 (
se

c)

(e) Data size: large queries.

10
1

10
2

10
3

10
4

G
30

G
100

G
300

G
1000

L
at

en
cy

 (
m

se
c)

(f) Data size: small queries.
Figure 12: The scalability experiment.

at 2.5GHz and 512GB memory. The servers are connected
through 25Gbps network.

6.2 Scalability
To the best of our knowledge,GAIA is the only system that can
handle Gremlin queries at scale. In this experiment, we study
the scalability of GAIA while running all LDBC queries. We
divide these queries into two groups based on their runtime
to better present the result: (1) large queries CR-3, 5, 6 and 9;
(2) small queries CR-1, 2, 7, 8, 11, 12.
Scale-out. To study the scale-out performance, we fix y to
4 while varying x as 2, 4, 8, 167, and report the latency of
each case in Figure 12a and Figure 12b. We analyze the result
regarding the two query groups:
Large queries. These queries traverse large amount of data

and run relatively longer, while they scale well with up to 6×
performance gain from 2 machine to 16 machines. While CR-
3 performs the worst to obtain only 3× performance gain, we
recognize that it contains very complex nested sub-traversals
that may introduce extra cost in synchronization (e.g. waiting
for the EOS marker).
Small queries. Due to either effective filtering or small range
of traversal, the small queries only touch a small amount
of data and thus are not computation-intensive. We expect
that their performance may not be improved with more par-
allelism, while CR-2 and CR-12 still run consistently faster
as shown in Figure 12b. CR-1, as a relatively slow query in

7G300 is too large to be held on one machine.

101

102

103

256 512 1024 2048 4096 INF
101

102

103

104

105

286 546 1076
2149

4294

25631

La
te

nc
y

(s
ec

)

Bound Memory (MB)

memory latency

(a) Bound memory execution.

100

101

102

103

10 102 103 104 105
102

103

104

M
em

or
y

(M
B

)

Result Limit #

DFS memory
BFS memory latency

latency

(b) Traversal strategy.

101

102

103

104

10 102 103 104
5K

6K

7K

La
te

nc
y

(s
ec

)

Result Limit #

GAIA memory
GAIA-NoES memory latency

latency

(c) Early stop.

100

101

102

103

1 5 10 15 20 103

104

105

M
em

or
y

(M
B

)

Start Vertex #

GAIA memory
Plato memory

Timely memory

latency
latency
latency

(d) Compare with big engines.

Figure 13: The experiment of our design choices.

this group, demonstrates seemingly counter-intuitive result.
The query actually asks to print out a lot of information after
locating the target vertices, which constitutes a majority of
the computation that cannot benefit from more parallelism.

Scale-up. We then fix x to 4, and vary y as 2, 4, 8, 16, and
report the result in Figure 12c and Figure 12d. Similar to
the scale-out cases, the large queries scale consistently, while
small queries do not gain speedup, as more parallelism is
used. It is interesting to compare the scale-out and scale-
up cases with the same DOP, [4]× [16] vs. [16]× [4] as an
example, we can observe [16]× [4] cases in-general perform
better, even it requires more communication. The result shows
that (1) communication cost is not a critical impact factor
for GAIA, for which the dynamic scheduling techniques can
seamlessly hide the communication cost by allowing ready
tasks to get scheduled; (2) data contentions may be a more
serious issue for interactive graph queries, as they are more
often confronted in fewer machines.

Data Size. Finally, we fix the DOP as [16]× [4], and run the
queries over the datasets of G30, G100, G300 and G1000. Note
that the sizes of these graphs are roughly linear to their scale
factors. The result is in Figure 12e and Figure 12f. For the
large queries, GAIA scales quite well with the growing of the
data. For the small queries (except CR-1, as explained earlier),
the performance stays roughly stable, as these queries only
touch a small amount of data.

Discussions. The experiment demonstrates reasonable trends
of scalability of GAIA: in general, the larger the query, the
better the scalability. Due to the irregularity of graph data
(and queries), it is challenging to derive the optimal DOP for
each query, while we leave it as an interesting future work.

330 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6.3 Our Design Choices
We study our design choices in this experiment by drilling
down to the performance factors including bounded-memory
execution (Section 5.1), hybrid traversal strategies (Sec-
tion 5.1) and early-stop optimization (Section 5.2). We run
Q6 on G300 using the DOP of [16]× [4], and report the query
latency and peak memory usage among all machines. We
use Q6 here as it includes complex nested Scopes with fine-
grained dependency, and it is a real query in production. We
conduct this experiment while adjusting the query parame-
ters m (number of starting vertices), k (the hop limit) and n
(the result limit) in Q6, and the system parameter of memory
upper-bound of each query (default 10GB) and traversal strate-
gies (default hybrid), and whether early stop is enabled (de-
fault enabled). We configure the following variants of GAIA,
namely GAIA (default settings), GAIA-DFS (manual DFS-
prioritized strategy)8, GAIA-NoMB (without/infinity memory
bound) and GAIA-NoES (without early stop).
Dynamic Scheduling. In this experiment, we study the effec-
tiveness of dynamic scheduling. We vary the memory upper-
bound as 256, 512, 1024, 2048, 4096 (MB) and infinity with
m = 10 starting vertices, and report the result in Figure 13a.
The actual memory usage (as labelled) of all cases is very
close to the bounded value, and is noticeably smaller than the
unbounded case, which has surged to more than 25GB. An
interesting observation is that the latency increases with the
memory bound. Note that graph traversal exhibits massive
parallelism and all the CPU cores available can be fully uti-
lized with just “enough” memory. Additional memory incurs
overheads (in allocation, buffering, etc.) rather than benefits.
Traversal Strategy. To verify the effectiveness of the hybrid
traversal strategy in GAIA, we compare GAIA with GAIA-
DFS/BFS. We vary n from 10 to 105, and report the time cost
and memory usage in Figure 13b. GAIA-DFS outperforms
GAIA when n ≤ 1000. This is because that DFS strategy
will prioritize scheduling operators in the deeper order (in the
dataflow), which can potentially escape earlier (thanks to early
stop) as soon as n cycles have been found. As n increases,
the hybrid strategy gradually catches up with, and eventually
outperforms DFS, as it can compute the required number of
cycles in a lower order. This experiment shows that the best
traversal strategy can be query- (and data-) dependent, and
the hybrid strategy is a more generic option.
Early Stop. We compare the performance of GAIA and GAIA-
NoES (without early stop). We vary n from 10 to 104, and
report the query latency and memory usage in Figure 13c.
When early stop is turned off, both the query latency and
memory usage remain fairly stable, as GAIA always computes
all result, regardless of the limit number. When early stop is
turned on, it can be observed that both the query latency and
memory consumption drop noticeably, compared to the cases
without early stop. In particular, the early-stop optimization

8Note that the BFS-prioritized strategy often causes out-of-memory, and
is thus excluded from our test.

Table 3: Comparison GAIA variants with big-data engines.

GAIA -DFS -NoMB -NoES Plato Timely
Lat./Sec. 79 4 440 972 1431 1690
Mem./GB 5.2 0.3 25.6 6.1 108 205

enables 12× improved performance and 1GB memory saving
when the limit number is 10.
Comparing with Big-Data Engines. Finally, we compare
our GAIA with existing high-performance engines, Timely
and Plato, in this experiment. We implement Q6 in Timely
and Plato9, which contains 105 and 95 logical lines of codes,
respectively. In comparison, the Gremlin query is written in 5
lines as presented in Figure 2. The query latency and memory
consumption of these engines, while varying m as 1, 5, 10,
15, 20, is shown in Figure 13d. GAIA achieves 16× and 14×
better performance, and consumes 21× and 10× less mem-
ory, than Timely and Plato, respectively. To demonstrate how
GAIA benefits from the proposed techniques to outperform
existing engines, we further bring different variants of GAIA
into the comparison, and the results of m = 10 are in Table 3.
The performance of GAIA drops by 5.5× without memory
bound, and by over 12× without early stop, while the latter is
already in the same order as those of Plato and Timely. Note
that GAIA-DFS even outperforms the default GAIA (hybrid)
due to the small result limit (n = 10). This experiment shows
that the novel design choices of GAIA, notably the Scope ab-
straction, and the techniques proposed on top of it, enable
more convenient programming and efficient execution of the
Gremlin queries over big-data engines.

6.4 Comparison with Graph Databases
Small-Scale DB. Although GAIA is designed to scale, we
show that GAIA demonstrates efficiency while compared to
graph databases on one single machine. Specifically, we use
the small graph G1 so that all the systems can load and process
queries in reasonable time; and for each LDBC query, we
choose the best query performance among the 4 systems
(TinkerGraph, Neo4j, OrientDB and JanusGraph) as the BSTI
for the query; then we vary the DOP of GAIA, and report the
relative performance of GAIA to BSTI in Figure 14.

GAIA performs comparably to the BSTI in most cases ex-
cept for queries CR-3 (up to 7× worse) and CR-12. Neo4j
performs better than any other systems on these queries. Fur-
ther investigation shows that, instead of faithfully traversing
the graph, Neo4j applies a join on some partial result to gen-
erate the output, which turns out to be more efficient in these
cases. We leave better query optimization of Gremlin on GAIA
as future work. As a whole, GAIA has an average relative per-
formance of just around 1.8 using single thread, and of 0.73
using 16 threads, among all LDBC queries.
Large-scale DB. We use G100 in this experiment to run all
LDBC queries. Note that we only compare JanusGraph, as

9For fair comparison, we implement cycle detection in Timely and Plato
using the same algorithm as in GAIA. In addition, we exploit all possible
optimizing options from both systems for the test.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 331

 0

 1

 2

 3

CR-1
CR-2

CR-3
CR-5

CR-6
CR-7

CR-8
CR-9

CR-11
CR-12

R
el

at
iv

e
La

te
nc

y
vs

. B
ST

I
1 thread

2 threads
4 threads

8 threads
16 threads

BSTI

Figure 14: GAIA performance relative to the best single-
threaded implementation (BSTI).

100
101
102
103
104
105

OT

CR-1
CR-2

CR-3
CR-5

CR-6
CR-7

CR-8
CR-9

CR-11
CR-12

Q
ue

ry
 L

at
en

cy
 (m

se
c)

Min Max JanusGraph

Figure 15: Compare GAIA with JanusGraph.

it is the only system that can store graph at this scale. Janus-
Graph cannot process query in parallel, and we run GAIA in
one machine for fair comparison. The graphs are stored in
8 machines for JanusGraph, and one single machine10 for
GAIA. We run each query on GAIA with DOP varying from 1
to 16, and report its max and min latency for each query while
compared to JanusGraph. The result is reported in Figure 15.
JanusGraph fails to answer many queries (CR-3,5,9) due to
OT. As shown, even the maximum latency (single-thread) of
GAIA is much shorter than that of JanusGraph in all cases.
Although GAIA is designed to scale in a cluster, it can further
benefit from multi-core parallelism in a single machine to
improve query performance, especially for large queries, as
can be seen in Figure 15.

7 Related Work
Graph Databases. Gremlin is widely supported by many
graph databases, such as Neo4j [29], OrientDB [30], Janus-
Graph [21], and cloud-based services including Cosmos
DB [6] and Neptune [1]. However, their query processing
is limited to one single process. Driven by rapidly growing
needs to query large graph data, several distributed in-memory
graph systems emerge, such as Trinity [40], ZipG [24],
Wukong+S [48], Grasper [20], and A1 [9]. Trinity and ZipG
offer their own programming models that are less flexible than
Gremlin. Grasper adopts Gremlin but provides a limited sub-
set of the language constructs (e.g., the lack of nested-loop

10Note that JanusGraph is properly warmed up to reduce the cost of pulling
data from remote storage.

support). Wukong+S and A1 leverage RDMA for serving
micro-second queries with much higher concurrency, which
is not the main target scenario of GAIA.
Graph Processing Systems. In contrast to many other sys-
tems that deal with batch-oriented iterative graph processing,
such as Pregel [26], PowerGraph [15], GraphX [16], and Gem-
ini [49], GAIA focuses on low-latency graph traversal at scale.
It is hard to support graph traversal in existing graph pro-
cessing systems. Firstly, their programming abstractions [22]
are usually low-level, makes these systems a privilege for
experienced users only [13]. Moreover, they typically adopt
the bulk synchronous parallel (BSP) execution model, which
is more suitable for an iterative routine processing over the
whole graph, but can be inefficient for running graph traversal
that visits an arbitrary portion of the graph.
Dataflow Engines and Dependency Tracking. A number
of existing systems such as CIEL [28], Naiad [27], and Ten-
sorFlow [45] offer generic data-parallel computing infras-
tructures with support for dynamic control flow. While it is
possible to program the logic of a Gremlin query on top of
these frameworks, it is extremely challenging to do so in the
pursuit of both correctness and efficiency, largely due to the
fine-grained dependency in Gremlin traversal. Tracking de-
pendency has been exploited to compute what is absolutely
necessary when there are limited changes to the input (e.g.,
incremental computing as in Incoop [7], DryadInc [33], Nec-
tar [19]), or frugal re-computation to repair lost state as in
MadLINQ [34] and TimeStream [35].
Declarative Programming Languages. Graph queries are
typically expressed using graph traversal and pattern match-
ing. Correspondingly, Gremlin [37] and Cypher [14] are the
most popular query languages. Cypher allows users to spec-
ify a graph pattern with variables. However, based on our
production experience, it is often challenging to compose
ad-hoc query pattern for a particular task. Therefore, we sup-
port Gremlin instead of Cypher in this work. Other notable
research projects in parallel declarative languages, such as
Cilk [8], can be leveraged by GAIA in theory, but they are not
particularly tailored for distributed graph traversal.

8 Conclusion
GAIA has been in use by a small community of domain ex-
perts for over a year in production at Alibaba. Our overall
experience is that GAIA, by combining the benefits of Grem-
lin with the power of distributed dataflow execution, proves
to be a simple, useful and efficient programming environment
for interactive analysis on big graph data.

Acknowledgments
We thank Benli Li, Pin Gao, and Donghai Yu for answering
Plato related questions. We are grateful to Alibaba Graph-
Scope team members for their support. Thanks also to the
NSDI review committee, as well as our shepherd Anurag
Khandelwal, for their valuable comments and suggestions.

332 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Amazon Neptune. https://aws.amazon.com/neptune/.
[Online; accessed 2-March-2021], 2019.

[2] Renzo Angles and Claudio Gutierrez. Survey of Graph
Database Models. ACM Comput. Surv., 40(1), February
2008.

[3] Apache TinkerPop. http://tinkerpop.apache.org/.
[Online; accessed 2-March-2021], 2019.

[4] Ching Avery. Giraph: Large-Scale Graph Processing
Infrastructure on Hadoop. Proceedings of the Hadoop
Summit. Santa Clara, 11(3):5–9, 2011.

[5] Konstantin Avrachenkov and Nelly Litvak. The Effect
of New Links on Google PageRank. Stochastic Models,
22(2):319–331, 2006.

[6] Azure Cosmos DB. https://azure.microsoft.com/

en-us/services/cosmos-db/. [Online; accessed 2-
March-2021], 2019.

[7] Pramod Bhatotia, Alexander Wieder, Rodrigo Ro-
drigues, Umut A. Acar, and Rafael Pasquin. Incoop:
MapReduce for Incremental Computations. In Proceed-
ings of the 2nd ACM Symposium on Cloud Computing,
SOCC ’11, New York, NY, USA, 2011. Association for
Computing Machinery.

[8] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall, and
Yuli Zhou. Cilk: An Efficient Multithreaded Runtime
System. SIGPLAN Not., 30(8):207–216, August 1995.

[9] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett,
Miguel Castro, Wonhee Cho, Joshua Cowhig, Nikolas
Gloy, Karthik Kalyanaraman, Richendra Khanna, John
Pao, Matthew Renzelmann, Alex Shamis, Timothy Tan,
and Shuheng Zheng. A1: A Distributed In-memory
Graph Database. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’20, page 329–344, New York, NY,
USA, 2020. Association for Computing Machinery.

[10] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew.
The Impact of Synchronization and Granularity on
Parallel Systems. SIGARCH Comput. Archit. News,
18(2SI):239–248, May 1990.

[11] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao,
Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng
Zhao, and Enhong Chen. Kineograph: Taking the Pulse
of a Fast-Changing and Connected World. In Proceed-
ings of the 7th ACM European Conference on Com-
puter Systems, EuroSys ’12, pages 85–98, New York,
NY, USA, 2012. ACM.

[12] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan
Chafi, Andrey Gubichev, Arnau Prat, Minh-Duc Pham,
and Peter Boncz. The LDBC Social Network Bench-
mark: Interactive Workload. In Proceedings of the 2015
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’15, pages 619–630, New York,
NY, USA, 2015. ACM.

[13] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, and
Jiaxin Jiang. Grape: Parallelizing Sequential Graph
Computations. Proceedings of the VLDB Endowment,
10(12):1889–1892, 2017.

[14] Nadime Francis, Alastair Green, Paolo Guagliardo,
Leonid Libkin, Tobias Lindaaker, Victor Marsault, Ste-
fan Plantikow, Mats Rydberg, Petra Selmer, and An-
drés Taylor. Cypher: An Evolving Query Language
for Property Graphs. In Proceedings of the 2018 In-
ternational Conference on Management of Data, SIG-
MOD ’18, pages 1433–1445, New York, NY, USA, 2018.
ACM.

[15] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. PowerGraph: Distributed
Graph-parallel Computation on Natural Graphs. In Pro-
ceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages
17–30, Berkeley, CA, USA, 2012. USENIX Association.

[16] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel
Crankshaw, Michael J Franklin, and Ion Stoica. GraphX:
Graph Processing in a Distributed Dataflow Framework.
In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages 599–
613, 2014.

[17] Gremlin Console. http://tinkerpop.apache.org/

docs/3.4.3/reference/#gremlin-console. [Online;
accessed 2-March-2021], 2019.

[18] Gremlin Server. http://tinkerpop.apache.org/docs/
3.4.3/reference/#connecting-gremlin-server. [On-
line; accessed 2-March-2021], 2019.

[19] Pradeep Kumar Gunda, Lenin Ravindranath, Chan-
dramohan A Thekkath, Yuan Yu, and Li Zhuang. Nectar:
Automatic Management of Data and Computation in
Datacenters. In OSDI, volume 10, pages 1–8, 2010.

[20] Chen Hongzhi, Li Changji, Fang Juncheng, Huang
Chenghuan, Cheng James, Zhang Jian, Hou Yifan, and
Yan Xiao. Grasper: A High Performance Distributed
System for OLAP on Property Graphs. In ACM Sympo-
sium on Cloud Computing 2019, Socc’19, 2019.

[21] JanusGraph. http://janusgraph.org/. [Online; ac-
cessed 2-March-2021], 2019.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 333

https://aws.amazon.com/neptune/
http://tinkerpop.apache.org/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
http://tinkerpop.apache.org/docs/3.4.3/reference/##gremlin-console
http://tinkerpop.apache.org/docs/3.4.3/reference/##gremlin-console
http://tinkerpop.apache.org/docs/3.4.3/reference/##connecting-gremlin-server
http://tinkerpop.apache.org/docs/3.4.3/reference/##connecting-gremlin-server
http://janusgraph.org/

[22] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi.
High-Level Programming Abstractions for Distributed
Graph Processing. CoRR, abs/1607.02646, 2016.

[23] U Kang, Mary McGlohon, Leman Akoglu, and Christos
Faloutsos. Patterns on the Connected Components of
Terabyte-Scale Graphs. In 2010 IEEE International
Conference on Data Mining, pages 875–880. IEEE,
2010.

[24] Anurag Khandelwal, Zongheng Yang, Evan Ye, Rachit
Agarwal, and Ion Stoica. ZipG: A Memory-Efficient
Graph Store for Interactive Queries. In Proceedings
of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD ’17, page 1149–1164, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[25] Andrea Lattuada, Frank McSherry, and Zaheer Chothia.
Faucet: A User-level, Modular Technique for Flow Con-
trol in Dataflow Engines. In Proceedings of the 3rd
ACM SIGMOD Workshop on Algorithms and Systems
for MapReduce and Beyond, BeyondMR ’16, pages 2:1–
2:4, New York, NY, USA, 2016. ACM.

[26] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A System for Large-Scale Graph
Processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’10, pages 135–146, New York, NY, USA, 2010.
ACM.

[27] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A Timely Dataflow System. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. ACM.

[28] Derek G. Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. CIEL: A Universal Execution Engine
for Distributed Data-Flow computing. In Proceedings
of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, page 113–126,
USA, 2011. USENIX Association.

[29] Neo4j. https://neo4j.com/. [Online; accessed 2-
March-2021], 2019.

[30] OrientDB. https://orientdb.com/. [Online; accessed
2-March-2021], 2019.

[31] Thomas M Parks. Bounded Scheduling of Process Net-
works. Technical report, CALIFORNIA UNIV BERKE-

LEY DEPT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCES, 1995.

[32] Plato: A Framework for Distributed Graph Computa-
tion. https://github.com/Tencent/plato. [Online; ac-
cessed 2-March-2021], 2020.

[33] Lucian Popa, Mihai Budiu, Yuan Yu, and Michael Isard.
DryadInc: Reusing Work in Large-Scale Computations.
HotCloud, 9:2–6, 2009.

[34] Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng
Chen, Yuan Yu, Thomas Moscibroda, and Zheng Zhang.
MadLINQ: Large-Scale Distributed Matrix Computa-
tion for the Cloud. In Proceedings of the 7th ACM euro-
pean conference on Computer Systems, pages 197–210,
2012.

[35] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu,
Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu, and
Zheng Zhang. TimeStream: Reliable Stream Compu-
tation in the Cloud. In Proceedings of the 8th ACM
European Conference on Computer Systems, pages 1–
14, 2013.

[36] Rodrigo Caetano Rocha and Bhalchandra D Thatte. Dis-
tributed Cycle Detection in Large-Scale Sparse Graphs.
Proceedings of Simpósio Brasileiro de Pesquisa Opera-
cional (SBPO’15), pages 1–11, 2015.

[37] Marko A. Rodriguez. The Gremlin Graph Traversal
Machine and Language (Invited Talk). In Proceedings
of the 15th Symposium on Database Programming Lan-
guages, DBPL 2015, pages 1–10, New York, NY, USA,
2015. ACM.

[38] Rust Programming Language. https://www.rust-lang.
org/. [Online; accessed 2-March-2021], 2020.

[39] Semih Salihoglu and Jennifer Widom. GPS: A Graph
Processing System. In Proceedings of the 25th Interna-
tional Conference on Scientific and Statistical Database
Management, pages 1–12, 2013.

[40] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A Dis-
tributed Graph Engine on a Memory Cloud. In Pro-
ceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’13, page
505–516, New York, NY, USA, 2013. Association for
Computing Machinery.

[41] The HIVE project. http://hadoop.apache.org/hive/.
[Online; accessed 2-March-2021], 2020.

[42] TigerGraph. https://www.tigergraph.com/

benchmark/. [Online; accessed 2-March-2021],
2018.

334 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://neo4j.com/
https://orientdb.com/
https://github.com/Tencent/plato
https://www.rust-lang.org/
https://www.rust-lang.org/
http://hadoop.apache.org/hive/
https://www.tigergraph.com/benchmark/
https://www.tigergraph.com/benchmark/

[43] Timely Dataflow. https://github.com/

TimelyDataflow/timely-dataflow. [Online; accessed
2-March-2021], 2019.

[44] Leslie G Valiant. A Bridging Model for Parallel Com-
putation. Communications of the ACM, 33(8):103–111,
1990.

[45] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo,
Mike Burrows, Andy Davis, Jeff Dean, Sanjay Ghe-
mawat, Tim Harley, Peter Hawkins, Michael Isard, Man-
junath Kudlur, Rajat Monga, Derek Murray, and Xiao-
qiang Zheng. Dynamic Control Flow in Large-Scale
Machine Learning. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, pages 18:1–18:15,
New York, NY, USA, 2018. ACM.

[46] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
Úlfar Erlingsson, Pradeep Kumar Gunda, and Jon Currey.
DryadLINQ: A System for General-Purpose Distributed
Data-parallel Computing Using a High-Level Language.
In Proceedings of the 8th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’08,

pages 1–14, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

[47] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
memory Cluster Computing. In 9th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 12), pages 15–28, San Jose, CA, April 2012.
USENIX Association.

[48] Yunhao Zhang, Rong Chen, and Haibo Chen. Sub-
millisecond Stateful Stream Querying over Fast-
Evolving Linked Data. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, SOSP ’17,
pages 614–630, New York, NY, USA, 2017. ACM.

[49] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and
Xiaosong Ma. Gemini: A Computation-Centric Dis-
tributed Graph Processing System. In 12th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), pages 301–316, 2016.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 335

https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/timely-dataflow

	Introduction
	System Architecture
	Programming with GAIA
	Compilation of Gremlin
	Challenges in Compiling Nested Traversal
	The Scope Abstraction
	Compilation of Gremlin using Scope
	Implementing Scope

	Distributed Execution
	Bounded-Memory Execution
	Early-Stop Optimization

	Evaluation
	Experimental Setup
	Scalability
	Our Design Choices
	Comparison with Graph Databases

	Related Work
	Conclusion

