
The VLDB Journal manuscript No.
(will be inserted by the editor)

Efficient Structural Node Similarity Computation on
Billion-scale Graphs

Xiaoshuang Chen · Longbin Lai · Lu Qin · Xuemin Lin

Received: date / Accepted: date

Abstract Structural node similarity is widely used

in analyzing complex networks. As one of the struc-

tural node similarity metrics, role similarity has the

good merit of indicating automorphism (isomorphism).

Existing algorithms to compute role similarity (e.g.,

RoleSim and NED) suffer from severe performance

bottlenecks, and thus cannot handle large real-world

graphs. In this paper, we propose a new framework,

namely StructSim, to compute nodes’ role similarity.

Under this framework, we first prove that StructSim is

an admissible role similarity metric based on the max-

imum matching. While the maximum matching is still

too costly to scale, we then devise the BinCount match-

ing that not only is efficient to compute but also guar-

antees the admissibility of StructSim. BinCount-based

StructSim admits a precomputed index to query a single
pair of node in O(k logD) time, where k is a small user-

defined parameter and D is the maximum node degree.

To build the index, we further devise an FM-sketch-

based technique that can handle graphs with billions of

edges. Extensive empirical studies show that StructSim
performs much better than the existing works regard-

Xiaoshuang Chen
University of New South Wales, Australia,
E-mail: xiaoshuang.chen@unsw.edu.au

Longbin Lai
Alibaba Group, China,
University of New South Wales, Australia,
E-mail: longbin.lailb@alibaba-inc.com

Lu Qin
Centre for AI, University of Technology Sydney, Australia,
E-mail: lu.qin@uts.edu.au

Xuemin Lin
University of New South Wales, Australia,
East China Normal University, China,
E-mail: lxue@cse.unsw.edu.au

ing both effectiveness and efficiency when applied to

compute structural node similarities on the real-world

graphs.

Keywords Node Similarity · Role Similarity ·
Efficiency · Link Analysis

1 Introduction

Structural node similarity is an important metric in

graph analysis, and hence has attracted many atten-

tions in the academia [18,23,24,53,60]. Among these

efforts, role similarity [24] stands out because of the

property of automorphism confirmation1, that is the

similarity between two nodes u and v is 1 (the maximum

similarity value) if there is an automorphism from u to

v. In this paper, given an unlabelled and undirected sim-

ple graph, we study the problem of computing nodes’

structural similarity with automorphism confirmation,

or more specifically, the role similarity. The term “role”

literally refers to the role that a node plays in the graph.

Examples of roles are a scholar’s academic rank in the

academia, enzymes in the PPI network [13], authorities

in the web graph [26] and an individual’s social position

in the social network [36], to name a few. An effective

way to infer the role of a node in a graph is to encom-

pass the configuration of its neighbours. In this sense,

we can evaluate the role similarity between two nodes

by cross-comparing their contexts of neighborhood.

Applications. Role similarity is adopted in a wide

scope of applications. In social science, role similarity

can facilitate role discovery [51]. In bioinformatics, role

similarity can be used to predict an unknown protein’s

1 It is isomorphism confirmation when computing similarity
between nodes in two different graphs.

2 Xiaoshuang Chen et al.

function, given that proteins with similar roles in the

PPI network have similar functions [13]. In the world

trade network, role similarity is useful for predicting

the position of a country in the world system [44]. In

a set of IP communication graphs of different time se-

quences, we can perform role analysis in one graph and

leverage the role similarity to explore roles in the others

[21]. Other applications include classifying or cluster-

ing nodes in the graphs [22], recommending nodes with

similar roles [34], and detecting anomalous nodes [43].

State-of-the-art. Jin et al. [24] defined five properties

for a role similarity metric, and a metric is called an ad-

missible role similarity metric (or has admissibility) if

it satisfies all the five properties. Automorphism confir-

mation is the most important one among these proper-

ties. The authors first proved that SimRank, a represen-

tative structural similarity measure, fails to guarantee

the automorphism confirmation. Thus, SimRank is inap-

propriate to measure role similarity. The authors then

proposed RoleSim as the first admissible role similarity

metric. The RoleSim algorithm2 inherits the framework

of SimRank to compute the role similarities of all pairs

of nodes in an iterative way.

Zhu et al. [60] proposed to compute structural node

similarity by utilizing the node’s hierarchical structure -

the k-adjacent tree. The authors then proposed the NED
distance metric between two nodes as the summation

of the level-wise tree edit distance of the respective k-

adjacent trees. Note that NED is originally a distance

metric, and it can be trivially turned into a similarity

metric via normalization. For consistency, we refer NED
as the corresponding similarity metric in this paper,

and we further prove that NED is an admissible role

similarity metric as well (Section 3.2).

Motivations. RoleSim and NED are state-of-the-art al-

gorithms to compute role similarity. However, both of

them have severe performance bottlenecks, and hence

only scale to million-scale graphs. RoleSim relies on

a maximum matching of the neighbors to guaran-

tee the automorphism confirmation, while it requires

O(kn2d2 log d) time to compute the similarities of all

pairs of nodes, where k is the number of iterations, n is

the number of nodes, and d is the average degree. This

apparently hinders applying RoleSim to large graphs.

To speed up the computation, the authors further pro-

posed IcebergRoleSim [25] that only computes node

pairs whose similarity values are guaranteed to be larger

than a given threshold. While this optimization, to

some extent, boosts the algorithm, it does not improve

the time complexity in the worst case. In addition to

2 In the following, we will use the metric (e.g., RoleSim)
and the algorithm to compute the metric interchangeably.

the efficiency issues, we observe the “odd-distance ab-

normality” of RoleSim (formally proved in Section 3.1),

which shows that it behaves counter-intuitively in even-

path graphs. Last but not least, RoleSim is constrained

to the all-pairs computation due to the iterative frame-

work, and thus one has to pay the all-pairs cost even

when only interested in ad-hoc queries such as single-

pair queries and single-source queries.

Unlike RoleSim, NED’s hierarchical framework does

not need the all-pairs cost for ad-hoc queries, but it

is not scalable either. Specifically, NED pays O(kτ3)

time to query a single pair of nodes, where τ is the

average number of nodes in each level of the k-adjacent

trees. Note that NED’s k-adjacent tree is based on the

breadth-first search tree, but it involves the already-

visited nodes on multiple levels. As a result, τ often

increases exponentially regarding k. In the experiment,

we witness τ > 100, 000 for certain nodes in a small

graph with only 400 nodes when k = 3, and the cubic

time complexity makes NED impossible to run.

Challenges. To resolve the scalability issues of existing

algorithms, we need to tackle the following three main

challenges.

Challenge I. We follow NED’s hierarchical framework

to free from RoleSim’s all-pairs cost for ad-hoc queries,

while the challenge is to seek a feasible hierarchical

structure that can reflect the structural information and

meanwhile is efficient to compute.

Challenge II. Challenge remains on how to compute

the similarity based on the hierarchical structure such

that the admissibility of role similarity metric [24] is

satisfied.

Challenge III. Real-world graphs nowadays commonly

reach billion scale, and it is challenging to compute role

similarity at this scale.

Our Approaches. In this paper, we propose StructSim
to address the above challenges as follows.

For Challenge I, we utilize a lightweight hierarchical

structure called k-neighborhood subgraph Gk(u) for

each node u, in which nodes in the sth level are nodes

whose shortest distances to u are exactly s. Note that

our k-neighborhood subgraph will only include each

node once. Thus, it avoids the exponential growth of

NED’s k-adjacent trees.

For Challenge II, we devise the StructSim framework

that computes the similarity of two nodes via the

weighted average of level-wise similarities of the re-

spective k-neighborhood subgraphs. In each level, the

similarity value is measured based on a matching be-

tween nodes at that level. In this paper, we configure

two matching methods for StructSim, namely maximum

Efficient Structural Node Similarity Computation on Billion-scale Graphs 3

Table 1 Properties of RoleSim, IcebergRoleSim, NED and StructSim. Billion-scale indicates if each algorithm can handle
billion-scale graphs.

Property RoleSim IcebergRoleSim NED StructSim

Single-pair Time Complexity O(kn2d2 log d) O(k|H|d2 log d) O(kτ3) O(k logD)

All-pairs Time Complexity O(kn2d2 log d) O(k|H|d2 log d) O(kn2τ3) O(kn2 logD)

Space Complexity O(n2) O(|H|) O(τ2) O(kn logD)

Billion-scale × × × X

matching and BinCount matching. We formally prove

that StructSim is an admissible role similarity metric

under both configurations.

For Challenge III, we design two techniques for

the StructSim framework, namely BinCount matching

and FM-sketch-based index (FMS-Index). With the

BinCount matching, the single-pair query can be con-

ducted in O(k logD + nd) time, where the term nd

indicates the time to construct the k-neighborhood

subgraphs online for the query nodes. Note that the

term nd can be trivially removed if we precompute the

k-neighborhood subgraphs for all nodes as an index.

Naively, this index can be built using the breadth-first

search, which requires O(n2d) time, and is too costly to

scale. Hence, we design the FMS-Index, which reduces

the index building time to O(rknd logD), where r is

the repeating times of performing FM-sketch (typically

a small value). The construction of FMS-Index can be

easily parallelized. Both the naive index and FMS-Index
occupy O(kn logD) space, while it allows the all-pairs

similarity computation without paying O(n2) space as

RoleSim to maintain the similarity values. These tech-

niques eventually empower StructSim to handle graphs

of billions of edges.

Apart from the aforementioned efficiency gains, we

further conduct extensive case studies, which demon-

strate that StructSim yields more reasonable results

than both RoleSim (and its extension IcebergRoleSim)

and NED. Table 1 summarizes the properties of

RoleSim, IcebergRoleSim, NED and our StructSim.

Specifically, StructSim is the only one that can handle

billion-scale graphs.

Contributions. Our contributions are summarized as

follows.

(1) A new hierarchical framework named StructSim to

compute role similarity. We propose StructSim that fol-

lows the hierarchical framework to better support ad-

hoc queries.

(2) Flexible configurations of StructSim with the guar-

antee of admissibility. The StructSim framework is de-

signed to allow two different matching methods (i.e.,

the maximum matching and the BinCount matching),

which are both proved to guarantee the admissibility of

role similarity metric.

(3) Efficient matching algorithm and indexing tech-

nique that scale to graphs with billions of edges. We de-

vise the BinCount matching and FM-sketch-based index

(FMS-Index) for StructSim, which empower StructSim
to handle billion-scale graphs. To the best of our knowl-

edge, StructSim is the first algorithm that can compute

nodes’ role similarity on graphs at billion scale.

(4) Extensive experimental studies. We conduct exten-

sive experiments that show StructSim is significantly

faster than the existing algorithms. For example, on

the Astroph dataset, to answer a single-pair similar-

ity query, StructSim spends less than 1 ms without

the index (less than 10 µs with the index), while NED
needs more than 150 seconds. For the all-pairs similar-

ity computation, both NED and RoleSim cannot ter-

minate within one day. IcebergRoleSim needs nearly

three hours to finish the computation, while the pro-

posed StructSim only spends less than 100 seconds. We

also conduct comprehensive case studies to show that

StructSim achieves better result qualities.

Organization. The rest of this paper is organized as

follows. Section 2 gives preliminaries and formally de-

fines the research problem; Section 3 reviews the exist-

ing works of RoleSim, IcebergRoleSim and NED. Besides,

we theoretically prove the “odd-distance abnormality”

of RoleSim and the admissibility of NED, which extends

our conference paper [11]; Section 4 introduces the

StructSim framework and proves its admissibility with

the maximum matching; Section 5 describes two tech-

niques, namely the BinCount matching and FM-sketch-

based index, to compute StructSim efficiently. We prove

the admissibility of StructSim with the BinCount match-

ing as an extension of our conference paper, and the

FM-sketch-based indexing technique and its paralleliza-

tion are first proposed in this journal paper; Section 6

reports case studies and the experimental results on

real-world graphs, which involves more results and anal-

ysis than our conference paper; Section 7 summarizes

the related work and Section 8 concludes this paper.

4 Xiaoshuang Chen et al.

Table 2 Table of Notations

Notation Description

G the input graph

Gk(u) the k-neighborhood subgraph of node u

n the number of nodes in G

m the number of edges in G

du the degree of node u

d the average node degree in G

D the maximum node degree in G

N(u) the neighbors of node u

Ni(u) the i-hop neighbors of node u

N≤i(u) the i-hop reachable neighbors of node u

Mi(u, v) the matching between Ni(u) and Ni(v)

2 PRELIMINARIES

In this paper, we consider the undirected and unlabelled

simple graph G = (V,E), where V is the node set and

E is the edge set. We denote the number of nodes |V |
and the number of edges |E| by n and m respectively.

For a node u ∈ V , N(u) denotes the neighbors of u, i.e.,

N(u) = {v ∈ V |(u, v) ∈ E}, and du denotes the degree

of node u, i.e., du = |N(u)|. Specifically, we use d and

D to denote the average node degree and the maximum

node degree respectively. Given two nodes u and v, we

denote δ(u, v) as the distance between u and v, namely

the length of the shortest path from u to v. Given a

subset of the nodes U ⊆ V , the induced graph G(U)

is defined as a subgraph of G formed by the nodes in

U and all edges among U , namely G(U) = (U,E(U)),

where E(U) = {(u, v)|u ∈ U, v ∈ U ∧ (u, v) ∈ E}.
Table 2 summarizes the notations in this paper, and we

further have the following definitions.

Definition 1 (i-Hop Neighbors) The i-hop neigh-

bors of node u, denoted as Ni(u), contains all the nodes

whose distance to u are of length i (i ≥ 0), namely,

Ni(u) = {v ∈ V |δ(u, v) = i}. Specifically, N0(u) = {u}
and N1(u) = N(u).

Definition 2 (i-Hop Reachable Neighbors) The

i-hop reachable neighbors of node u, denoted as N≤i(u),

contains all the nodes who have a path to u with length

no more than i (i ≥ 0). Clearly, N≤i(u) =
⋃i
j=0Nj(u).

Definition 3 (k-Neighborhood Subgraph) The k-

neighborhood subgraph of node u is the induced sub-

graph G(N≤k(u)) (or Gk(u) for short).

Definition 4 (Matching of i-Hop Neighbors) We

define the matching between two node sets S1 and

S2, denoted as M(S1, S2), as M(S1, S2) = {(x, y)|x ∈
Sm ∧ y = f(x) ∈ SM}. Here, f : Sm → SM is an

injective function, where Sm is the smaller set and

SM is the larger set of S1, S2. Given node u and

node v, we further denote Mi(u, v) as the matching

of the respective i-hop neighbors Ni(u) and Ni(v),

namely Mi(u, v) = M(Ni(u), Ni(v)). Specifically, when

i = 0, M0(u, v) = {(u, v)}. In this paper, we denote

M(u, v) = M1(u, v) as the matching of the neighbors.

Definition 5 (Graph Isomorphism and Auto-

morphism) An isomorphism of graph G = (VG, EG)

and graph H = (VH , EH) is a bijective mapping be-

tween VG and VH , denoted by σ : VG → VH , such that

for any two nodes u and v in G, (u, v) ∈ EG if and

only if (σ(u), σ(v)) ∈ EH . Specially, automorphism is

an isomorphism mapping G to itself.

Definition 6 (Automorphic Equivalence) For

node u and node v in a graph G, if there is an automor-

phism σ of G satisfying σ(u) = v, we say that u and v

are automorphically equivalent, denoted as u ≡ v.

As a node similarity metric that is inferred from

the structural context, role similarity metric [24] has

the following five properties.

Definition 7 (Role Similarity Metric Proper-

ties) For a graph G = (V,E), a similarity metric

Sim(u, v) that measures the role similarity between

node u and node v should satisfy:

P1. Range: ∀u, v ∈ V, 0 ≤ Sim(u, v) ≤ 1.

P2. Symmetry: ∀u, v ∈ V,Sim(u, v) = Sim(v, u).

P3. Automorphism confirmation: If u ≡ v,Sim(u, v) =

1, where u ≡ v denotes that u and v are automor-

phically equivalent.

P4. Transitive similarity: ∀w ∈ V , Sim(u,w) =

Sim(v, w) if u ≡ v.

P5. Triangle inequality: ∀u, v, w ∈ V , Dist(u, v) ≤
Dist(u,w) + Dist(v, w), where Dist(u, v) = 1 −
Sim(u, v).

According to [24], a similarity measure is an admis-

sible role similarity metric if it satisfies all the five

properties.

3 Existing Works

RoleSim and NED are the two state-of-the-art algo-

rithms to compute role similarity scores that satisfy

all the five properties in Definition 7. In this sec-

tion, we first overview RoleSim [24] and its variant

IcebergRoleSim [25] in Section 3.1, and give a formal

proof for the observation of “odd-distance abnormal-

ity”. Then, we introduce NED [60], and prove its admis-

sibility of being a role similarity metric in Section 3.2.

Efficient Structural Node Similarity Computation on Billion-scale Graphs 5

3.1 RoleSim

RoleSim is based on the iterative computation frame-

work as SimRank. Given a graph G = (V,E), the

RoleSim similarity of node pair (u, v) ∈ V × V is com-

puted as:

RoleSimk(u, v) = β max
M(u,v)

∑
(x,y)∈M(u,v)

RoleSimk−1(x, y)

max(|N(u)|, |N(v)|)
+ (1− β),

(1)

where RoleSimk(u, v) denotes the RoleSim(u, v) value

in the kth iteration, M(u, v) is the matching between

N(u) and N(v), and 0 < β < 1 is a decay factor. Ac-

cording to Equation 1, RoleSimk(u, v) is updated as the

maximum matching between N(u) and N(v) regard-

ing the respective RoleSim values in the previous iter-

ation. While the maximum matching is indispensable

for RoleSim to meet with the automorphism confirma-

tion property (Definition 7), it is in general a costly

operation. Specifically, the time complexity of RoleSim
is O(kn2d2 log d) when using the most efficient greedy

algorithm [5] to compute the maximum matching. It

is apparently too costly to apply to large real-world

graphs.

Jin et al. then proposed IcebergRoleSim [25] to

speed up the computation of RoleSim. To do so, they

maintain the node pairs whose RoleSim values are

guaranteed to be larger than a given threshold θ in

a table H. After that, IcebergRoleSim will only up-

date the similarity values for the pairs in H. As

for those pruned, an initial value is given before the

computation. To be specific, the time complexity of

IcebergRoleSim is O(k|H|d2 log d), with |H| ≤ n2. How-

ever, IcebergRoleSim only optimizes RoleSim heuristi-

cally, and it cannot improve the complexity in the worst

case and thus has limited performance. Moreover, both

RoleSim and IcebergRoleSim are constrained to the all-

pairs similarity computation due to the iterative frame-

work, and one has to pay the all-pairs cost even when

ad-hoc queries are of interest.

Odd-distance Abnormality. In addition to the

above drawbacks, we observe the following “odd-

distance abnormality” on even paths for RoleSim (and

IcebergRoleSim). In Figure 1, we show an even path

P of 99 nodes, in which u50 is the middle node. In

terms of nodes’ role similarity, one would expect that

the closer nodes in the path should have higher role

similarity scores, e.g. Sim(u1, u2) > Sim(u1, u4) >

Sim(u1, u6) > · · · > Sim(u1, u50) in Figure 1. How-

ever, RoleSim always gives the same values for these

4321 50 99989796

Fig. 1 Even path P , u50 is the middle node. Nodes of the
same filling color are automorphically equivalent.

node pairs, e.g. RoleSim(u1, u2) = RoleSim(u1, u4) =

· · · = RoleSim(u1, u50). Besides, RoleSim also ren-

ders RoleSim(u2, u3) = RoleSim(u2, u5) = · · · =

RoleSim(u2, u49), and so forth. As the distances of the

abnormal node pairs are odd, we call this phenomenon

“odd-distance abnormality”. Next, we define the “odd-

distance abnormality” problem and then give a formal

proof.

Theorem 1 (Odd-Distance Abnormality) Let P

be an even path u1−u2−· · ·−ut−· · ·−un−1−un, where

n = 2t − 1 and t ≥ 4. For every node ui, i ∈ [1, t − 3]

on P , it holds that ∀d ∈ [1, t−i−12],RoleSim(ui, ui+1) =

RoleSim(ui, ui+2d+1).

Proof. We assume β = 0 for the RoleSim computation

[24]. Actually, the value of β has no impact on the proof.

We denote (i, j)k as the RoleSim value of the node pair,

(ui, uj) at iteration k. We prove Theorem 1 by perform-

ing mathematical induction on two conditions listed

as follows. Specifically, condition 2 indicates an order

sequence, that for ∀k, (t, t− 1)
k ≥ (t− 1, t− 2)

k ≥
(t− 2, t− 3)

k ≥ · · · ≥ (2, 1)
k

holds.

Condition 1: ∀k, 1 ≤ i ≤ t − 3, 1 ≤ d ≤ t−i−1
2 ,

(i, i+ 1)
k

= (i, i+ 2d+ 1)
k
;

Condition 2: ∀k, 3 ≤ i ≤ t, (i, i− 1)
k ≥ (i− 1, i− 2)

k
.

Induction Basis: Based on the definition and initial-

ization of RoleSim in [24], it is easy to prove that the

condition 1 and condition 2 hold at 0th iteration.

Inductive Step: Assume the above two conditions

hold at (k − 1)
th

iteration, we further prove that they

are also true at kth iteration.

Firstly, we prove condition 1 is true at the kth iter-

ation. The proof for this condition includes two cases:

Case 1: i = 1. Based on the assumption, (2, 3)k−1 ≥
(2, 1)k−1, thus we have (1, 2)k = (2,3)k−1

2 . Similarly, we

have that for ∀d ∈ [1, t−22],

(1, 2d+ 2)k = max{ (2, 2d+ 1)k−1

2
,

(2, 2d+ 3)k−1

2
}

If 2d+ 3 ≤ t is true, then we can get (1, 2d+ 2)k =
(2,3)k−1

2 as (2, 3)k−1 = (2, 2d + 1)k−1 = (2, 2d + 3)k−1.

Otherwise, if 2d+3 = t+1, then we have (2, 2d+3)k−1 =

(2, 2d + 1)k−1 due to the automorphic equivalence.

Therefore, (1, 2d + 2)k = (2,3)k−1

2 = (1, 2)k holds. And

for node u1, the condition 1 holds.

6 Xiaoshuang Chen et al.

Case 2: 1 < i ≤ t − 3. Based on Equation 1, for

∀d ∈ [1, t−i−12], we have the following two equations.

(i, i+ 1)k = max{ (i− 1, i)k−1 + (i+ 1, i+ 2)k−1

2
,

(i− 1, i+ 2)k−1 + (i+ 1, i)k−1

2
}

(i, i+ 2d+ 1)k = max{
(i− 1, i+ 2d)k−1 + (i+ 1, i+ 2d+ 2)k−1

2
,

(i− 1, i+ 2d+ 2)k−1 + (i+ 1, i+ 2d)k−1

2
}

According to (i − 1, i)k−1 = (i − 1, i + 2)k−1 and

(i + 1, i + 2)k−1 ≥ (i + 1, i)k−1, we have (i, i + 1)k =
(i−1,i)k−1+(i+1,i+2)k−1

2 . Similarly, we can get (i, i+ 2d+

1)k = (i−1,i)k−1+(i+1,i+2)k−1

2 based on the two condi-

tions for (k − 1)th iteration. The corner case of this

part for i+ 2d+ 2 = t+ 1 is similar to that in Case 1.

Therefore, case 2 holds. Combining Case 1 and Case 2,

the first condition holds at the kth iteration.

Secondly, we prove that the second condition holds

at the kth iteration. The proof contains three cases as

follows.

Case 1: i = t. We have

(t, t− 1)k = max{ (t+ 1, t)k−1 + (t− 1, t− 2)k−1

2
,

(t+ 1, t− 2)k−1 + (t− 1, t)k−1

2
}

(t− 1, t− 2)k = max{ (t, t− 1)k−1 + (t− 2, t− 3)k−1

2
,

(t, t− 3)k−1 + (t− 2, t− 1)k−1

2
}

As node ut−1 and node ut+1 are automorphi-

cally equivalent, then we can get (t, t − 1)k =
(t−1,t)k−1+(t−1,t−2)k−1

2 . Based on the assumption, (t −
2, t − 3)k−1 = (t, t − 3)k−1 and (t, t − 1)k−1 ≥ (t −
2, t − 1)k−1 hold, so we immediately have (t − 1, t −
2)k = (t,t−1)k−1+(t−2,t−3)k−1

2 . Finally, we can get the

conclusion that (t, t − 1)k ≥ (t − 1, t − 2)k holds as

(t− 1, t− 2)k−1 ≥ (t− 2, t− 3)k−1 is true.

Case 2: 3 < i < t. In this scenario, we have

(i, i− 1)k = max{ (i+ 1, i)k−1 + (i− 1, i− 2)k−1

2
,

(i+ 1, i− 2)k−1 + (i− 1, i)k−1

2
}

(i− 1, i− 2)k = max{ (i, i− 1)k−1 + (i− 2, i− 3)k−1

2
,

(i, i− 3)k−1 + (i− 1, i− 2)k−1

2
}

Since (i − 1, i − 2)k−1 = (i + 1, i − 2)k−1 and

(i + 1, i)k−1 ≥ (i − 1, i)k−1, we have (i, i − 1)k =
(i+1,i)k−1+(i−1,i−2)k−1

2 . Similarly, we can derive (i −
1, i − 2)k = (i,i−1)k−1+(i−2,i−3)k−1

2 . From the assump-

tion, (i+ 1, i)k−1 ≥ (i, i− 1)k−1 and (i− 1, i− 2)k−1 ≥
(i− 2, i− 3)k−1, therefore, ∀i ∈ (3, t), (i, i− 1)k ≥ (i−
1, i−2)k holds, which can directly derive (t−1, t−2)k ≥
(t− 2, t− 3)k ≥ · · · ≥ (4, 3) ≥ (3, 2)

Case 3: i = 3. We have (3, 2)k = (2,1)k−1+(3,4)k−1

2

and (2, 1)k = (2,3)k−1

2 . Since (4, 3)k−1 ≥ (2, 3)k−1,

(3, 2)k ≥ (2, 1)k holds.

Combining Case 1, Case 2, and Case 3, the second

condition also holds at the kth iteration.

Hence, condition 1 and condition 2 hold at every

iteration. Condition 1 indicates the “Odd-Distance Ab-

normality” issue.

Remark 1 In Section 6.2, we give a case study on an

even-path graph to demonstrate the “odd-distance ab-

normality” of RoleSim. While it is hard to generalize

the proof of “odd-distance abnormality” to an arbitrary

graph, we speculate that such abnormality may pro-

duce negative effects on a wider basis. In Section 6.2,

we conduct some other case studies, in which there is

one conducted on the Barbell graph that is a regular ex-

tension of the path graphs. According to the case study,

RoleSim produces counter-intuitive results on the Bar-

bell graph, and it is also less effective than both NED
and our proposed StructSim on real-life graphs.

3.2 NED

Different from RoleSim based on the iterative computa-

tion framework, NED provides another perspective to

compute role similarity [60]. The intuition of NED is

that two nodes are similar if their respective hierarchi-

cal structures are similar. To describe such hierarchical

structure, NED adopts the k-adjacent tree as a “signa-

ture” to represent each node. A k-adjacent tree rooted

at node u is the k-level breadth-first search tree from

node u (with the already-visited nodes present). Given

the k-adjacent trees of two nodes u and v, NED(u, v)

is evaluated as the tree edit distance of the respective

trees. Note that NED is originally a distance metric.

For consistency, we refer NED in this paper the corre-

sponding similarity metric based on a trivial normal-

ization as: NED = 1 − NED∗

NED∗max
, in which NED∗ is the

Efficient Structural Node Similarity Computation on Billion-scale Graphs 7

Fig. 2 A four complete graph and the NED’s 3-adjacent tree
for node u1

original distance metric and NED∗max is the maximum

NED∗. Next, we prove that NED is also an admissible

role similarity metric that satisfies all the five properties

in Definition 7.

Theorem 2 NED is an admissible role similarity met-

ric.

Proof. Refer to Definition 7, property P1 can be triv-

ially proved. Property P2 and property P5 can be eas-

ily verified as NED∗ is a distance metric [60].

Property P3 holds, as if nodes u and v are automor-

phically equivalent (u ≡ v), their respective k-adjacent

trees must be isomorphic, leading to NED∗(u, v) = 0

and NED(u, v) = 1.

For property P4, we have NED∗(u,w) +

NED∗(u, v) ≥ NED∗(v, w) and NED∗(v, w) +

NED∗(u, v) ≥ NED∗(u,w) based on property

P5 ; according to P3, it satisfies that if u ≡ v,

then NED∗(u, v) = 0. Therefore, we can get that

NED∗(u,w) ≥ NED∗(v, w) and NED∗(v, w) ≥
NED∗(u,w), i.e. NED∗(u,w) = NED∗(v, w). Thus,

P4 also holds.

Alternatively, we can use NED to measure the role

similarities. However, the bottleneck of NED remains to

compute the tree edit distance of the k-adjacent trees,

which is in general NP-Complete [57]. In order to tackle

this bottleneck, the authors then proposed TED* [60],

a relaxation of tree edit distance that is polynomially

solvable, leading to O(kτ3) time for answering a single-

pair query, in which τ is the average number of nodes

in one tree level. Note that τ grows exponentially with

k and can be huge in practice. We present in Figure 2

one of the 3-adjacent trees of a four complete graph,

which clearly shows the exponentially growing trend of

the tree. The problem attributes to the involvement of

the already-visited nodes in the breadth-first search in

the k-adjacent tree. Even when we use a small k value

as suggested by the authors, τ , and hence the query

time, can still be unbounded in real-world graphs. In the

experiment, we witness a small graph of 400 nodes in

which some nodes have generated the 3-adjacent trees

with more than 100, 000 nodes at a certain level, and

the computation fails naturally due to the cubic time

complexity.

4 The StructSim Framework

As both RoleSim and NED are inefficient to compute,

we propose StructSim in this paper to compute role sim-

ilarity based on the hierarchical k-neighborhood sub-

graphs. In the following, we first introduce the defini-

tion of StructSim, and present the StructSim compu-

tation algorithm by showing how k-neighborhood sub-

graph is leveraged to compute similarity. Then, we dis-

cuss the first configuration that makes StructSim an ad-

missible role similarity metric. Finally, we analyze the

complexity of the algorithm and propose several opti-

mization perspectives.

4.1 StructSim Overview

We define StructSim that computes the role similarity

score of a node pair via the weighted average of level-

wise similarities between the respective k-neighborhood

subgraphs. Specifically,

Definition 8 (StructSim) Given an undirected and

unlabelled simple graph G = (V,E), the StructSim
between two nodes u ∈ V and v ∈ V , denoted as

StructSim(u, v), is calculated as

StructSim(u, v) = ω̃0ζ(u, v) +
k∑

i=1

ω̃i

∑
(x,y)∈Mi(u,v) f(x, y)

max(|Ni(u)|, |Ni(v)|)
,

where ζ(u, v) = min(du,dv)
max(du,dv)

gives an initial score of u

and v, Mi(u, v) is a matching (Definition 4) between

Ni(u) and Ni(v), f : (x, y) → [0, 1] is a predefined

function to compute similarity values of a node pair

in the matching, and ω̃i is a hop-dependent weighting

parameter satisfying
∑k
i=0 ω̃i = 1 (see the following

algorithm for more details).

Remark 2 Here we discuss the options of initialization

(i.e., ζ(·)) for StructSim computation. Refer to RoleSim
[24], there are two kinds of initialization functions, i.e.,

degree-binary initialization (ζ(u, v) = 1 if du = dv
otherwise ζ(u, v) = 0) and degree-ratio initialization

(ζ(u, v) = min(du,dv)
max(du,dv)

)3, which can be used to compute

role similarity scores. Our StructSim can adopt both

of the two initialization functions as well. In this pa-

per, we use the degree-ratio by default since it gives

3 In [24], RoleSim has a third initialization, namely “ALL-
1” initialization, which renders same similarity scores as the
degree-ratio initialization.

8 Xiaoshuang Chen et al.

initial scores in a more fine-grained manner than the

degree-binary initialization. We will compare the per-

formance of StructSim with different initialization func-

tions in Section 6.2.

Algorithm. We outline the algorithm to compute

StructSim in Algorithm 1. First of all, we assign the

initial similarity value of the node pair in line 1. Then,

we compute StructSim score based on the respective

k-neighborhood subgraphs (line 2-line 12). Specifically,

we deploy two operations - Matching and Delta - to dy-

namically update the similarity value level by level. At

each level i, we can get the i-hop neighbours Ni(u) and

Ni(v) from their k-neighborhood subgraphs (line 3).

The Matching operation (line 10), as the name sug-

gests, finds a matching Mi(u, v) of Ni(u) and Ni(v).

Given Mi(u, v), the Delta operation (line 11) com-

putes the delta value of current level ∆i(u, v), which

is a summation of f(x, y) for each (x, y) ∈ Mi(u, v).

Finally, the similarity value is updated as a weighted

average between the old value and ∆i(u, v) (line 12).

The weight 0 < ωi < 1 is a parameter used to adjust

the contribution of each level, and the weighting pa-

rameter ω̃i in Definition 8 is accordingly computed by

ω̃i =
∏k
j=i+1(1 − ωj)ωi. Specifically, we set ωi = df

1+i

and if df < 1, the value of ω̃i gradually decreases re-

garding i, which conforms with the intuition that nodes

closer to the target node should contribute more to the

final similarity score. Note that Ni(u) or Ni(v) may be

empty at a certain level. In this case, if both are empty,

we stop the iteration and return the similarity value

(line 5); otherwise, we simply let ∆i(u, v) = 0 (line 8)

and continue the loop until k, which naturally penalizes

the final similarity in line 12.

Remark 3 StructSim follows NED’s hierarchical frame-

work rather than RoleSim’s iterative scheme to better

support ad-hoc queries. Surprisingly, we observe that

the hierarchical framework often renders better rank-

ing quality than the iterative one. In Theorem 1, we

have shown that RoleSim behaves anti-intuitively in

even-path graphs. In Section 6.2, we further perform

different case studies, which show that the hierarchical

framework yields better ranking qualities. In addition,

it is also possible to make StructSim iterative by setting

f(x, y) in line 11 of Algorithm 1 to the StructSim value

of (x, y) in the previous iteration. However, such itera-

tive scheme will use the information of k-hop neighbors

multiple times, which will make it perform poorly in

real-world tasks.

The Matching and Delta are critical operations for

StructSim, which can affect both the admissibility and

performance of the algorithm.

Algorithm 1: Framework for StructSim Com-

putation

Input : The graph G, a node pair (u, v) and
parameter k.

Output : StructSim(u, v).

1 S ← min(du,dv)

max(du,dv)
;

2 foreach level i ∈ [1, k] do
3 Get i-hop neighbours Ni(u) and Ni(v) from

Gk(u) and Gk(v);
4 if Ni(u) = ∅ and Ni(v) = ∅ then
5 break;

6 else
7 if Ni(u) = ∅ or Ni(v) = ∅ then
8 ∆i(u, v)← 0;

9 else
10 (Matching) Computing the matching

Mi(u, v);

11 (Delta) ∆i(u, v)←
∑

(x,y)∈Mi(u,v) f(x,y)

max(|Ni(u)|,|Ni(v)|) ;

12 S ← (1− ωi)S + ωi∆i(u, v);

13 return S.

4.2 Maximum Matching

Our primary goal is to guarantee the admissibility

of StructSim according to Definition 7. Inspired by

RoleSim, our first attempt is maximum matching,

and we accordingly call the algorithm StructSim-Max.
Specifically, we compute the matching in line 10 that

maximizes the delta value in line 11. Here we use the

initial scores as the predefined similarity value, namely

f(x, y) = ζ(x, y) =
min(dx,dy)
max(dx,dy)

. Intuitively, we want to

match the nodes that are most similar regarding their

degrees. We denote the maximum matching at the ith

level of u, v as Mmax
i (u, v). Below we give an example

to show how the maximum matching is processed.

Example 1 Given a node pair (u, v) (u, v ∈ V),

and their i-hop neighbours Ni(u) = {x1, x2, x3} and

Ni(v) = {y1, y2, y3, y4}, let their degrees be dx1
=

1, dx2
= 2, dx3

= 7, and dy1 = 3, dy2 = 7, dy3 = 9,

dy4 = 10. Figure 3 plots the corresponding maxi-

mum matching process (the number near the arrow is

the node’s degree). For example, nodes x2, x3 match

with y1, y2, respectively. As for node x1, it matches

with y3 as y1 and y2 has been matched to others

and cannot be reused. Consequently, Mmax
i (u, v) =

{(x1, y3), (x2, y1), (x3, y2)} as shown in the shadowed

grids, and ∆i(u, v) =
2
3+

7
7+

1
9

4 = 0.45.

With the maximum matching, we can write

StructSim using the following equation:

StructSim(u, v) =

k∑
i=0

ω̃i
∑

(x,y)∈Mmax
i (u,v) f(x, y)

max(|Ni(u)|, |Ni(v)|)
, (2)

Efficient Structural Node Similarity Computation on Billion-scale Graphs 9

𝑣

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ

𝑢

𝑥ଵ

𝑥ଶ

𝑥ଷ 1

1

2

7

3 7 9 10
1
3

1
7

1
9

1
10

2
3
3
7

2
7

2
9

2
10

7
9

7
10

Fig. 3 The maximum matching process of Ni(u) and Ni(v)

where f(x, y) =
min(dx,dy)
max(dx,dy)

and ω̃i =
∏k
j=i+1(1−ωj)ωi.

Specifically, ωi = df
i+1 ,

∑k
i=0 ω̃i = 1 and 0 < df ≤ 1 is

a damping factor. We next prove the admissibility of

StructSim-Max by proving that the StructSim in Equa-

tion 2 satisfies all the properties in Definition 7.

Theorem 3 (Admissibility) StructSim with the

maximum matching is an admissible role similarity

metric.

Proof. We prove this theorem by showing that if f(x, y)

is an admissible role similarity metric, then StructSim
in Equation 2 is an admissible role similarity metric

as well. The admissibility of f(x, y) =
min(dx,dy)
max(dx,dy)

has

been proved in [24]. Next, we prove the admissibility

of StructSim. Given ∆i(u, v) =

∑
(x,y)∈Mmax

i
(u,v) f(x,y)

max(|Ni(u)|,|Ni(v)|) in

Equation 2, we need to prove that for ∀i ∈ [1, k], ∆i sat-

isfies all the five properties in Definition 7. It is not hard

to verify that ∆i satisfies the properties of Range, Sym-

metry, and Automorphic confirmation (Definition 7).

We next prove that ∆i satisfies the other two proper-

ties, i.e., Transitive similarity and Triangle inequality.

We first prove if u ≡ v, ∆i(u,w) = ∆i(v, w). When

u ≡ v, there exists a one-to-one equivalence, denoted

as σ, between nodes in Ni(u) and Ni(v). Accordingly,

for Mmax
i (u,w) = {(x, y)|x ∈ Ni(u), y ∈ Ni(w)}, we

define the matching Mi(v, w) = {(σ(x), y)|∀(x, y) ∈
Mmax
i (u,w)}. It is not hard to verify that Mi(v, w) is

a maximum matching between Ni(v) and Ni(w). As

f(x, y) is admissible, we have f(x, y) = f(σ(x), y) and

thus ∆i(u,w) = ∆i(v, w).

Then, we prove 1 − ∆i(u, v) ≤ 1 − ∆i(u,w) + 1 −
∆i(v, w). The proof includes three cases: (1) |Ni(w)| ≤
|Ni(v)| ≤ |Ni(u)|; (2) |Ni(v)| ≤ |Ni(w)| ≤ |Ni(u)|; and

(3) |Ni(v)| ≤ |Ni(u)| ≤ |Ni(w)|. We give the proof

of case 1 while the proofs of the other cases are sim-

ilar. We define a matching between Ni(u) and Ni(v)

as Mi(u, v) = {(x, z)|(x, y) ∈ Mmax
i (u,w)

∧
(z, y) ∈

Mmax
i (v, w)}, and W (·) as a function computed by

W (S) =
∑

(x,y)∈S f(x, y) in which S denotes a set of

node pairs. Note that |Mmax
i (u,w)| = |Mmax

i (v, w)| =
|Ni(w)| and W (Mmax

i (u, v)) ≥W (Mi(u, v)), we have

1−∆I
i (u,w) + 1−∆I

i (v, w)− (1−∆I
i (u, v))

= −∆I
i (u,w)−∆I

i (v, w) +∆I
i (u, v) + 1

≥ −
W (Mmax

i (u,w))

|Ni(u)|
−
W (Mmax

i (v, w))

|Ni(v)|
+
W (Mi(u, v))

|Ni(u)|
+ 1

≥
|Ni(w)| −W (Mmax

i (u,w))

|Ni(u)|
+
|Ni(w)| −W (Mmax

i (v, w))

|Ni(v)|

−
|Ni(w)| −W (Mi(u, v))

|Ni(u)|
−
|Ni(w)|
|Ni(u)|

−
|Ni(w)|
|Ni(v)|

+
|Ni(w)|
|Ni(u)|

+ 1

≥
|Ni(w)| −W (Mmax

i (u,w))

|Ni(u)|
+
|Ni(w)| −W (Mmax

i (v, w))

|Ni(u)|

−
|Ni(w)| −W (Mi(u, v))

|Ni(u)|
+ 1−

|Ni(w)|
|Ni(v)|

≥
∑

(x,y,z)(1− f(x, y)) + (1− f(z, y))− (1− f(x, z))

|Ni(u)|

+ 1−
|Ni(w)|
|Ni(v)|

≥ 0

where (x, y, z) denotes (x, y) ∈ Mmax
i (u,w), (z, y) ∈

Mmax
i (v, w), (x, z) ∈Mi(u, v). As a result, the triangle

inequality is proved, and the theorem holds.

4.3 Complexity Analysis

The time complexity of Algorithm 1 is mainly twofold.

Firstly, it is to compute the k-neighborhood subgraphs

for the two query nodes in line 3, which basically runs a

bfs traversal from nodes u and v. Thus the complexity

is O(max(|Gk(u)|, |Gk(v)|)) = O(nd), where n is the

number of nodes and d is the average degree.

Secondly, it is the Matching operation in line 10.

Here we will analyze the maximum matching. The com-

putation of StructSim-Max is dominated by the maxi-

mum matching operation. Hungarian algorithm [27] is

the most efficient algorithm to do the maximum match-

ing with O(s3) time complexity for an input size s. As

a result, when we apply it to compute the maximum

matching among the i-hop neighbors, the complexity

is O(|Ni|3), where |Ni| is the average size of the i-

hop neighbors. We can adopt a greedy algorithm [5]

as RoleSim to further improve the maximum matching

time to O(|Ni|2 log |Ni|).
As a whole, the time complexity of StructSim-

Max for a single node pair is O(nd + |Ni|2 log |Ni|).
Note that |Ni| = n in the worst case, which hin-

ders its application to large real-world graphs. RoleSim,

IcebergRoleSim, and NED suffer from such performance

bottleneck as well. With the constraint of the algo-

rithmic structures, there remains few spaces to further

improve RoleSim (IcebergRoleSim) and NED. However,

opportunities still present with the flexibility of the

10 Xiaoshuang Chen et al.

StructSim framework in Algorithm 1. Our next section

will reveal two techniques, namely BinCount match-

ing and FMS-Index, that guarantee the admissibility of

StructSim, and meanwhile make it efficient to compute.

5 Efficient StructSim Computation

5.1 BinCount Matching

We introduce the BinCount matching as a more ef-

ficient Matching alternative. Other than the perfor-

mance gain, StructSim based on the BinCount match-

ing still guarantees the admissibility of role similarity

metric. In the following, we denote the BinCount-based

StructSim as StructSim-BC.

Motivations. We first look into the following motivat-

ing example.

Example 2 Refer to Example 1. The maximum match-

ing tends to match nodes with close degrees, which

is reasonable by intuition. For example, node x2(2)

matches y1(3) and x3(7) matches y2(7), where the num-

ber in the bracket is the degree. The remaining match

(x1(1), y3(9)), however, looks like an outlier. Note that

this “dissimilar” pair contributes very little to the result

and can be simply ignored.

An alternative way of processing the matching may

be: we group those i-hop neighbors into bins of ranges

according to their degree, and we only match the nodes

that belong to the same bin. The benefits of doing this

are twofold. Firstly, the nodes in each resulted match

are closer in degree by natural, analogous to that of the

maximum matching. Secondly, searching is more local

and hence more efficient.

Figure 4 depicts the above matching process for

nodes in Example 1. The nodes in Ni(u) and Ni(v)

are grouped into 4 bins, and only those in the same

bins are matched. By doing so, x2 still matches y1 and

x3 matches y2, same as the maximum matching. Nodes

across the bins are not matched due to the small con-

tribution to the similarity value.

We next show how we adjust the Matching and

Delta operations in Algorithm 1 to implement the

StructSim-BC algorithm.

Matching Operation. Motivated by Example 2, given

two nodes u and v and their k-neighborhood subgraphs,

we arrange the matching process in the ith (1 ≤ i ≤ k)

level as: we group Ni(u) and Ni(v) into b bins accord-

ing to the degrees, where the jth(1 ≤ j ≤ b) bins are

denoted as N j
i (u) and N j

i (v) respectively, then we com-

Bin1 Bin2 Bin3 Bin4
𝑑 ൌ 1 𝑑 ∈ ሾ2,3ሿ 𝑑 ∈ ሾ4,7ሿ 𝑑 ∈ ሾ8,15ሿ

𝑑 ൌ 1 𝑑 ∈ ሾ2,3ሿ 𝑑 ∈ ሾ4,7ሿ 𝑑 ∈ ሾ8,15ሿ

Bin1 Bin2 Bin3 Bin4

𝑁௜ሺ𝑢ሻ

𝑁௜ሺ𝑣ሻ

match matchno
match

no
match

𝑥ଵ 𝑥ଶ 𝑥ଷ

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ

Fig. 4 The BinCount matching between Ni(u) and Ni(v)

pute the matching Mi(u, v) as

Mi(u, v) =

b⋃
j=1

M(N j
i (u), N j

i (v)), (3)

where M(N j
i (u), N j

i (v)) is a matching of the nodes in

the jth bins.

Intuitively, the smaller the node’s degree is, the

finer-grained the matching should be processed. It is

not hard to see that two nodes of degrees 1 and 10

are less similar than two nodes of degrees 101 and 110,

though with the same gap. As a result, we will arrange

the bins based on the logarithmic value of the degree.

Specifically, given a node u ∈ V and its i-hop neighbors

Ni(u), let b = 1 + blogDc, we will accordingly divide

Ni(u) into b bins, where the jth bin N j
i (u) contains the

nodes of degree in the range [2j−1, 2j − 1]. Given the

bin arrangement, we define the BinCount set for Ni(u)

as

Bi(u) = {bc1i , bc2i , . . . , bcbi}, (4)

where bcji = |N j
i (u)|. Note that the BinCount sets of

each level can be easily computed while constructing

the k-neighborhood subgraph.

Definition 9 (BC-Index) For a node u, we define

BC-Index as the data structure of the k-neighborhood

subgraph Gk(u), along with the BinCount set Bi(u) for

Ni(u)(1 ≤ i ≤ k).

Example 3 In Example 2, the observed maximum de-

gree is D = 10, thus we configure 1 + blogDc = 4

bins for Ni(u) and Ni(v). Specifically, bin1 contains the

nodes of d = 1, therefore N1
i (u) = {x1} and N1

i (v) = ∅.
The nodes in the other bins are shown in Figure 4. The

corresponding BinCount sets are Bi(u) = {1, 1, 1, 0} and

Bi(v) = {0, 1, 1, 2}, respectively.

Delta Operation. We look into a proper predefined

similarity value of two matched nodes (x, y), namely

f(x, y) in line 11 of Algorithm 1. We agree with the

maximum matching process that the degree ratio is a

Efficient Structural Node Similarity Computation on Billion-scale Graphs 11

proper measurement of the predefined similarity of two

nodes. Given the two nodes whose degree are within

the range [2j−1, 2j − 1] (i.e. they are in the same bin),

it is obvious that the degree ratio is within (1
2 , 1], thus

we may use any value in between for f(x, y). As will

be shown later, we assign f(x, y) = 1 to guarantee the

admissibility of the algorithm. By doing so, we can ac-

cordingly simplify the Delta operation as

∆i(u, v) =

∑b
j=1 min(bcji (u), bcji (v))

max(
∑b
j=1 bc

j
i (u),

∑b
j=1 bc

j
i (v))

, (5)

where bcji (u) ∈ Bi(u) and bcji (v) ∈ Bi(v).

Example 4 Refer to Example 3, the corresponding

BinCount sets at level i are Bi(u) = {1, 1, 1, 0} and

Bi(v) = {0, 1, 1, 2}, respectively. According to Equa-

tion 5, the ∆i(u, v) value based on the BinCount match-

ing is ∆i(u, v) = 2
4 = 0.5.

Admissibility. We prove the admissibility of

StructSim-BC.

Theorem 4 (Admissibility) StructSim with the

BinCount matching is an admissible role similarity

metric.

Proof. We prove that for ∀i ∈ [1, k], ∆i in Equation 5

satisfies all the properties in Definition 7.

Given the BinCount sets Bi(u) = [c1, · · · , cb] for

node u and Bi(v) = [c′1, · · · , c′b] for node v, then we can

get ∆i(u, v) =
∑b

j=1min(cj ,c
′
j)

max(
∑b

j=1 cj ,
∑b

j=1 c
′
j)

(Equation 5). Sup-

pose that there are b nodes x1, x2 · · ·xb and all of them

are with different node degree, i.e. dx1 6= dx2 · · · 6= dxb
.

Then, consider another two nodes p and q, and p has∑b
j=1 cj neighbors, in which there are cj copies for node

xj . Similarly, node q has
∑b
j=1 c

′
j neighbors, in which

there are c′j copies for node xj . Note that if u ≡ v, p ≡ q
holds as well since the BinCount sets of nodes u and v at

level i are the same. Based on the definition of RoleSim,

we can get RoleSim1(p, q) =
∑b

j=1min(cj ,c
′
j)

max(
∑b

j=1 cj ,
∑b

j=1 c
′
j)

, in

which RoleSim is with the degree-binary initialization.

Thus, ∆i(u, v) = RoleSim1(p, q). As RoleSim has been

proved to satisfy all the properties at any iteration

[24], ∆i meets all the properties as well. As a re-

sult, StructSim-BC is an admissible role similarity met-

ric.

Remark 4 BinCount matching cannot be applied to

RoleSim and NED. Note that the computation of the

BinCount matching requires a predefined similarity

function f(x, y) in the Delta operation. While for

RoleSim (or IcebergRoleSim), the similarity function

varies in each iteration. As for NED, the similarity func-

tion at each level depends on the results of the previous

level and is not possible to predefine either.

Complexity Analysis. The BinCount matching is

very efficient, as it merely costs O(k logD) time to scan

the BinCount set in Equation 5 at all levels. While the

BinCount matching only accounts for one part of the

time complexity of StructSim-BC, the other part re-

mains to compute the BC-Index, which is equivalent to

constructing the k-neighborhood subgraphs, and costs

O(nd) in the worst case (Section 4.3). Thus, the time

complexity of StructSim-BC is O(k logD + nd).

Note that we can precompute the BC-Index for each

node to improve the time complexity to O(k logD). An

extra benefit of doing this is that we can trivially do

the all-pair similarity computation using O(n2k logD)

time, which is better than RoleSim by removing a d2

term. More impressively, it is more space-efficient. Note

that RoleSim must use O(n2) space to memorize the

previous similarity values and NED needs O(τ2) space

to do the maximum matching shown in Table 1. On the

other end, the BC-Index requires each node to maintain

a k-level BinCount set, each of which is of size O(logD).

As a whole, the index takes O(kn logD) space, while it

allows the algorithm to compute the all-pair computa-

tion online without any memorization. The disadvan-

tage of the precomputation is that it takes O(n2d) time

as a whole, which is cost-prohibitive to apply to large

real-world graphs. To resolve this issue, we further pro-

pose the FM-sketch-based index, called FMS-Index, in

the following section.

5.2 FM-Sketch-based Index Construction

We notice that the BinCount sets record count of the

nodes in certain degree ranges, and each count can be

approximated with a theoretical guarantee based on the

well-known FM sketch [16]. This inspires us to propose

the FMS-Index as an efficient substitution of BC-Index
for StructSim-BC.

Flajolet-Martin Sketch. Flajolet-Martin sketch [16],

denoted as FM sketch, was proposed to estimate the

number of distinct elements in a multiset S. Define

fm(S) as the FM sketch of S, which is a binary num-

ber of l bits. Let h : x → [0, 2l − 1], be a uniform

hash function for x ∈ S. We further define p0 and p1 as

two position functions which give the positions of the

left-most 0-bit and 1-bit of the binary number (start-

ing from 0 and counting from left to right), respectively.

For example, given a binary number 001010, p0 = 0 and

12 Xiaoshuang Chen et al.

p1 = 2. We have

fm(S) =
∨
x∈S

1 << (l − p1(h(x))− 1), (6)

where
∨

denotes a bitwise-or operation and << is the

logical left shifting. Given fm(S), we can estimate the

number of distinct elements zS as

z̃S =
1

φ
2p0(fm(S)), (7)

where φ = 0.775351 is a constant. To improve the ac-

curacy, we can run r times of independent estimation,

which results in the following theoretical guarantee.

Theorem 5 For given 0 < δ < 1 and r, if l =

O(log zS + log r + log δ−1), then |zS − z̃S | < εzS holds

with the probability at least 1−δ, where ε = O(
√

log δ−1

r)

[16,32].

FM-Sketch-Based Index Construction. Given a

node u, we show how to utilize the FM sketch to es-

timate the BinCount set Bi(u) of Ni(u). Note that this

is non-trivial, as we do not have Ni(u) at hand to apply

the FM sketch. To resolve this, we use the fact that

Ni(u) = N≤i(u) \N≤i−1(u), i ≥ 1,

where N≤i(u) is the i-hop reachable neighbors (Defi-

nition 2). Analogous to Equation 4, we can compute

the BinCount set B≤i(u) for N≤i(u) using the same bin

arrangement. It is immediate that

bcji (u) = bcj≤i(u)−bcj≤i−1(u), i ≥ 1,∀1 ≤ j ≤ 1+blogDc,

where bcji (u) and bcj≤i(u) are the jth element of Bi(u)

and B≤i(u), respectively. The idea emerges to estimate

bcj≤i(u) in the above equation instead of directly touch-

ing bcji (u).

To do so, we compute the FM sketch fm(N j
≤i(u)),

and according to Equation 7, we have an estimation of

bcj≤i(u) as

b̃c
j

≤i(u) =
1

φ
2p0(fm(Nj

≤i
(u))) (8)

We then solve the last puzzle of how to efficiently

compute fm(N j
≤i(u)). We first cite the following lemma

[32].

Lemma 1 Given two multisets S1 and S2, we can get

fm(S1
⋃
S2) = fm(S1)

∨
fm(S2), where fm(S1) and

fm(S2) are the FM sketches for S1 and S2 respectively.

It is obvious that N≤i(u) =
⋃
v∈N(u)N≤(i−1)(v), i ≥

2, and with Lemma 1, it is not hard to see

fm(N j
≤i(u)) =

∨
v∈N(u)

fm(N j
≤(i−1)(v)), i ≥ 2 (9)

Note that the cases of i = 0 and i = 1 for Equation 9

are easy to compute based on N0(u) and N(u). With

Equation 8 and Equation 9, we will estimate bcji (u) for

∀i ≥ 1 as

b̃c
j

i (u) = b̃c
j

≤i(u)− b̃c
j

≤i−1(u), 1 ≤ j ≤ 1 + blogDc (10)

Lemma 2 Suppose that the distribution of nodes in the

bins is the same for each level of the k-neighborhood

subgraph, then Equation 10 has the approximate ratio
a+b
a−bε with confidence 1− δ if the FM sketch has length

l = O(log n + log r + log δ−1), where ε = O(
√

log δ−1

r),

n = |V |, a = |N≤i(u)| and b = |N≤(i−1)(u)|.

Proof. Denote x, y, z as the true values of bcj≤i(u),

bcj≤i−1(u) and bcji (u) respectively, and x′, y′, z′ as the

estimated ones, then z = x − y and z′ = x′ − y′. Ac-

cording to Theorem 5, we have x − εx < x′ < x + εx

and y − εy < y′ < y + εy. Thus, |z
′−z|
z < εx+yx−y . Based

on the assumption, the lemma holds.

Remark 5 In Lemma 2, when a � b, the approximate

ratio approaches ε. Note that this is often true in real-

world graphs for i ≤ 6, where the number of i-hop

reachable neighbors often increases exponentially. We

confirm this for real-world datasets in Section 6.3. It

is worth noting that in Algorithm 1, we prefer to set

wi <
1
i+1 to make the contribution of each layer grad-

ually decreases with i, and in this sense, such approxi-

mation error is negligibly small for i > 6.

Next, we give the pseudo-code for FMS-Index con-

struction, shown in Algorithm 2, which can be trivially

performed r times to improve the accuracy as shown in

Lemma 2.

Complexity Analysis. The FMS-Index now corre-

sponds to computing Equation 9 for each node u ∈ V in

all levels 1 ≤ i ≤ k and all bins 1 ≤ j ≤ 1+blogDc. We

can apply the dynamic programming while using Equa-

tion 9 as the transaction function. The time complexity

of building the FMS-Index is now O(rknd logD), where

r is the number of times to perform FM sketch and the

term nd comes from accessing the neighbors from each

node. This is evidently better than the O(n2d) time

complexity of BC-Index.

Parallelization. In Algorithm 2, the most costly part

is to iterate over all nodes in the graph to compute the

Efficient Structural Node Similarity Computation on Billion-scale Graphs 13

Algorithm 2: FM-Sketch-Based Index Con-

struction
Input : A data graph G, parameter k.
Output : FMS-Index.

1 b← 1 + blogDc;
2 foreach node u ∈ V do
3 foreach bin j ∈ [1, b] do

4 Calculate fm(Nj
≤0(u)), fm(Nj

≤1(u)) based

on {u} and N(u)
⋃
{u}, respectively;

5 foreach level i ∈ [2, k] do
6 foreach node u ∈ V do
7 foreach bin j ∈ [1, b] do

8 fm(Nj
≤i(u))← 0;

9 foreach node w ∈ N(u) do

10 fm(Nj
≤i(u))←

fm(Nj
≤i(u))

∨
fm(Nj

≤i−1(w));

11 Calculate FMS-Index based on Equation 8 and
Equation 10;

12 return FMS-Index.

sketches, and it may be the bottleneck while handling

large graphs. Fortunately, this can be easily paralleled

as the computation of each node is only relied on the

sketches of its neighbors at the previous level and is ob-

viously independent. We simply round-robin the nodes

to distribute the loads to all available threads, which

already achieves a satisfactory scalability trend in the

experiment (Figure 13(b)). There are other distribution

strategies [2] that may result in better load balance. As

this is not the main focus of this paper, we leave it as

interesting future work.

RoleSim can use a similar idea to parallelize, but

its main problem is the O(n2) space occupation,
which makes it almost infeasible for large graphs. As

IcebergRoleSim only optimizes RoleSim heuristically, it

still occupies O(n2) space in the worst case. Similarly,

NED is not capable of adopting parallelism as well since

it needs O(τ2) space to perform maximum matching,

and τ cannot be bounded by the number of nodes in

the graph.

6 Experimental Evaluation

In this section, we conduct extensive experiments to

compare StructSim with RoleSim, IcebergRoleSim, and

NED in terms of effectiveness and efficiency. The au-

thors kindly offer the codes for RoleSim, IcebergRoleSim,

and NED. RoleSim and IcebergRoleSim were imple-

mented in C++. NED was originally implemented in

Java, while we re-implement it in C++ for a fair com-

parison. We implement StructSim and all its variants

in C++. The experiments are by default conducted on

a machine configured with an Intel(R) Xeon(R) CPU

E3-1220 v6 @ 3.00GHz and 64GB memory. As for the

experiments of parallelism, we use a server of 2 Intel(R)

Xeon(R) CPU E5-2698 v4 @ 2.20GHz (each has 20

cores 40 threads) and 512GB memory.

6.1 Experimental Settings

Algorithms. We summarize the algorithms and their

parameters in the experiments as follows.

– RoleSim: An iterative algorithm proposed in [24].

β is set to 0.9 and the convergence is defined as

when the values change by less than 1% on previous

values, same as [24].

– IcebergRoleSim: An extension for RoleSim in [25]. θ

is set to 0.8. β and convergence are defined the same

as RoleSim.

– NED: A hierarchy-based algorithm proposed in [60].

The number of levels k is set to 3, as suggested by

the authors.

– StructSim-Max: The StructSim based on maximum

matching in Section 4.2. We set the number of levels

k = 10. We let ωi = df
i+1 , where i is the level and

0 < df ≤ 1 is a damping factor. We set df = 0.8,

i.e., ωi = 0.8
i+1 by default.

– StructSim-BC: The BinCount-based StructSim in

Section 5.1. The parameters are the same as

StructSim-Max. We set r to 150 for FM sketch. We

further configure the following two variants:

– StructSim-BCb: StructSim-BC with BC-Index.
– StructSim-BCf : StructSim-BC with FMS-Index.

6.2 Effectiveness on Case Studies

Here, we evaluate the effectiveness of StructSim against

RoleSim and NED. In addition to the existing role

similarity measures (i.e., RoleSim, IcebergRoleSim, and

NED), we include two state-of-the-art embedding-based

algorithms, namely GraphWave [15] and struct2vec
[41], as another two baselines to investigate the effec-

tiveness of the proposed StructSim. Specifically, both

GraphWave [15] and struct2vec [41] compute the

structural node embedding, which is a representation of

node encoding its structural information. We compute

the Euclidean distance of two nodes’ embeddings and

use the same normalization as NED to compute simi-

larity values. The codes of GraphWave and struct2vec
are provided by the respective authors, and we use the

default settings as advised in the related papers.

The effectiveness of different algorithms is evaluated

via four case studies, which have clear roles as ground

14 Xiaoshuang Chen et al.

P

B
R

O

Y
G

Fig. 5 An even path graph P. Different colour indicates dif-
ferent roles.

truth to judge each algorithm’s quality. Specifically,

we first use an even-path graph to demonstrate the

“odd-distance abnormality” of RoleSim (Theorem 1).

Further, we extend the even-path graph to a Barbell

graph, which shows that RoleSim performs the worst

on rendering the similarity rankings, and the culprit

may be the aforementioned “odd-distance abnormal-

ity”. Finally, we adopt two kinds of real-life networks,

i.e., DBLP co-authorship network and air-traffic net-

works to investigate the performance of different algo-

rithms in tackling the tasks of ranking, clustering, and

classification.

Even Path. In Figure 5, we show an even path graph

P of length 10. Clearly, P has 6 equivalence classes

denoted by different node colours and notations that

are used as their roles.

In the heat maps shown in Figure 6, we present

the similarity values given by different algorithms. In-

tuitively, we expect that closer nodes in Figure 5 should

be more similar in their roles. For example, we ex-

pect the role similarity metric rendering the ranking

Sim(P, P) > Sim(P,B) > · · · > Sim(P,R) for the “P”

nodes, and Sim(B,B) > Sim(B,G) > · · · > Sim(B,R)

for the “B” nodes, and so forth. IcebergRoleSim is omit-

ted since its results are similar to RoleSim. In the heat

map, we cross compare all pairs of node classes in a

6x6 grid, and the darker the block is, the larger the

similarity value is given by the algorithm.

According to Figure 6, the diagonal blocks in all

heat maps of role similarity measures (i.e., RoleSim,

NED, StructSim-Max and StructSim-BC) are the dark-

est, indicating that RoleSim, NED and our StructSim
can guarantee automorphism confirmation of role simi-

larity metric (Definition 7). In contrast, the embedding-

based algorithms, namely GraphWave and struct2vec,
cannot ensure that automorphic nodes have identi-

cal embeddings, and thus both of them fail to sat-

isfy the property of automorphism confirmation. From

Figure 6(a), we can observe that RoleSim always ren-

ders the rankings of RoleSim(P,B) = RoleSim(P, Y) =

RoleSim(P,R), RoleSim(B,G) = RoleSim(B,O) and

RoleSim(G, Y) = RoleSim(G,R), as indicated by the

outlined blocks. This observation reveals the “odd-

distance abnormality” of RoleSim and conforms with

(a) RoleSim (b) NED

(c) GraphWave (d) struct2vec

(e) StructSim-Max (f) StructSim-BC

Fig. 6 Heat maps of different algorithms on computing the
even path P. Outlined blocks in RoleSim indicates “odd-
distance abnormality”.

the theoretical analysis in Theorem 1. Note that

among all the evaluated algorithms, only NED and our

StructSim (both StructSim-Max and StructSim-BC) give

reasonable results that follow the expected rankings.

Barbell Graph. To show that such “odd-distance ab-

normality” of RoleSim may present on a broader ba-

sis, we conduct the case study on a Barbell graph, a

regular extension to the path graph. A Barbell graph

B(p, q) is formed by connecting two p-cliques using a

path of length q. In Figure 7, we show a Barbell graph

B(10, 10), which contains an even path of length 10.

The Barbell graph has 7 equivalent classes indicated by

different colors (and notations), which stand for their

roles.

Figure 8 shows the heat maps given by different al-

gorithms on the Barbell graph B(10, 10). Analogous to

Efficient Structural Node Similarity Computation on Billion-scale Graphs 15

O

R

Y

G

B

P

W

Fig. 7 The graph structure of the Barbell graph B(10, 10)

(a) RoleSim (b) NED

(c) GraphWave (d) struct2vec

(e) StructSim-Max (f) StructSim-BC

Fig. 8 Heat maps of different algorithms on computing
B(10, 10)

the case of even path, we also expect the similarity rank-

ings, such as Sim(P, P) > Sim(P,B) > · · · > Sim(P,R)

for the “P” nodes, and Sim(B,B) > Sim(B,G) > · · · >
Sim(B,R) for the “B” nodes, and so forth. As observed

from Figure 8, RoleSim is still messed up with the simi-

larity rankings as that in Figure 6, which aligns with our

speculation of “odd-distance abnormality”. It is worth

noting that the ranking of NED on computing the Bar-

bell graph can hardly be distinguished from the heat

map, as shown in Figure 8(b). One possible reason for

this is that NED generates k-adjacent trees by involv-

ing the already visited nodes, and the tree size (and

thus the edit distance) distributes extremely. In terms

of the embedding-based algorithms, i.e., GraphWave

and struct2vec, they perform better than NED in gener-

ating more distinguishable scores, but they still fail to

give results aligned with the expected rankings. Among

all the algorithms, only StructSim-Max and StructSim-

BC render the heat maps according to the expected

rankings.

Co-authorship Graph. We then evaluate the perfor-

mance of different algorithms on the task of relevance

ranking. We adopt a co-authorship graph extracted

from DBLP4, which includes authors who published at

least one paper on six top “DB/DM/IR” conferences

(SIGMOD, VLDB, ICDE, KDD, SIGIR, and WWW)

from 2014 to 2018. Instead of using the full graph, we

extract a subset of the DBLP dataset as [24] due to the

high computational cost of RoleSim. In summary, this

graph contains 18,587 nodes and 55,783 edges.

As most researchers’ positions are available on-

line, we can use the position to indicate the role, as

shown in Figure 9. We categorize the positions into
four roles: “Student”, “Young researcher”, “Senior re-

searcher” and “Distinguished researcher”, which are in-

dicated with colours from light to dark, and the detailed

positions regarding each category are also listed. Note

that the position itself may not fully reflect the role.

For example, a “Young researcher” from a laureate re-

search organization may act like a “Senior researcher”.

Therefore, we also include the H-index as an auxil-

iary indicator of the role. H-index is defined as such

an h value that at least h papers of the researcher have

been cited at least h times, which is an important in-

dicator of the researcher’s impact and can be obtained

from google scholar. We consider 7 ranges of H-index:

[0, 10), [10, 20), . . . , [50, 60), [60,∞), and present the H-

index range of each researcher in Figure 9 as propor-

tional to the radius of the corresponding circle.

Figure 9 presents the top-5 most similar results

given by evaluated algorithms for 9 query researchers

4 https://dblp.uni-trier.de/xml/

https://dblp.uni-trier.de/xml/

16 Xiaoshuang Chen et al.

Student:

Ph.D

Young researcher:

Postdoc

Researcher

Senior researcher:

Assistant / Associate Prof.

(Senior) Lecturer

Distinguished researcher:

Professor

Principal Scientist

Jiawei
Han

Chao Zhang

Hui
Xiong

Jieping
Ye

Philip S.
Yu

Christos
Faloutsos

Chang
Tien

Jieping
Ye

Lise
Getoor

Feng Chen

Jian
Pei

Philip S.
Yu Christos

Faloutsos

Hui
Xiong

Jieping
Ye

Jieping
Ye

Christos
Faloutsos

Hui
Xiong

Jian
Pei

Philip S.
Yu

Christos
Faloutsos

Jieping
Ye

Philip S.
Yu

Hui
Xiong

Charu C.
Aggarwal

Gianpaolo Zambonini

Dezhao Song

Zoubida Kedad

Dengbao Wang

Johann

NED

RoleSim

StructSim-Max

StructSim-BC

GraphWave

struct2vec

(a) Distinguished Researcher from
UIUC

Jiafeng Guo

Yongfeng
Zhang

Fernando Diaz

J. S Culpepper

Minghui Qiu

W.Bruce
Croft

Yongfeng
Zhang

Divesh

Wei Chen

Mag. Balazinska

Xiangliang Zhang

J. S
Culpepper

Yunjun Gao

Fernando Diaz

Eric P
Xing

Feifei
Li

J. S
Culpepper

Milad Shokouhi

Yunjun Gao

Eric P
Xing

Feifei
Li

Zhenjie Zhang

Anastasia Ailamaki

Dongxiang Zhang

Xiao Huang

Hannu Toivonen

Eric P
Xing

Sanjay Chawla
J. S

Culpepper

Mohammed

Xiaoli Li

NED

RoleSim

StructSim-Max

StructSim-BC

GraphWave

struct2vec

(b) Distinguished Researcher from
UMassAmherst

Jure
Leskovec

Guoliang Li

Wolfgang Lehner

Rayid Ghani

Jeffrey Xu Yu

Jian Pei
Wolfgang Lehner

Elke A. Rundensteiner

RaoKotagiri

Luo Si

Qi He

Aoying Zhou

Hanghang
Tong

Guoliang
Li

Jeffrey Xu Yu

Samuel
Madden

Aoying
Zhou

Guoliang Li

Hanghang
Tong

Samuel
Madden

Jeffrey Xu Yu

Jian Pei

Hanghang
Tong
Wolfgang Lehner

Guoliang Li

Naren

Maarten

Giannis Agathangelos

Feng
Zhao

Milan Vojnovic

Yuan Yang
NED

RoleSim

StructSim-Max

StructSim-BC

GraphWave

struct2vec

(c) Distinguished Researcher from
Stanford

Xiang Ren

Heng Ji

Bo Zhao

Jingbo Shang

Meng Jiang

Fangbo Tao
Bo Zhao

Meng
Jiang

Heng Ji

Chuanren Liu

Yizhou Sun

Bo Zhao

Jing Yuan

Dawei Yin

Reynold Cheng

Aditya

Bo Zhao

Jing Yuan

Dawei Yin

Reynold Cheng

Aditya

Bo Zhao

Wei Fan

Yu Zheng

Fei Wang

Reynold Cheng

Matt Backus

Thomas Blake

Mariana Oliveira

Lejian Liao

Jingqing Zhang

NED

RoleSim

StructSim-Max

StructSim-BC

GraphWave

struct2vec

(d) Senior Researcher from USC

Francesco Calabrese
Stefano Braghin

Gianni Barlacchi

Michele Berlingerio

Chang Ge
Jian Xu

Yiannis Gkoufas

David Carmel

C. Lee Giles

Narayan

Mirrokni

Kyle Williams

Kun Gai

Amr Magdy

Narayan

Mirrokni

Kyle Williams

Alessandro

Clare Conran

Kyle Williams

Aris Anagnostopoulos

Imed Zitouni

Rosales

Thomas Kissinger

Gillian Dobbie

Alban Siffer

Bilih Priyogi

Chia-Hoang Lee

Dashun Wang

Yiannis Gkoufas

Kyle Williams

NED

RoleSim

StructSim-Max

StructSim-BC

GraphWave

struct2vec

(e) Senior Researcher from Vodafone

Antonio Vergari
Mauro

Teresa
Basile

Mauro

Teresa
BasileVictor F.

Cavalcante
Marcos R. Vieira

Vagner Figueredo
Kim Schouten

Nienke de Boer

Tjian Lam

Fabrizio G.
Ventola

Mauro

Floriana

Ittai Abraham

Mauro

Teresa
Basile

Sudarshan

Miao Cheng

Anand Sriramulu

Teresa Basile

Julia Efremova

Xiaohu Cheng

Nicholas

Alexandre

Artjom Klein

Nicolas Thome

Christopher L. Carmichael

Yongjun Bao

Anita Krisko

Ragunathan Mariappan

NED

RoleSim

StructSim-Max

StructSim-BC

GraphWave

struct2vec

(f) Young Researcher from Tübingen

Hossein Esfandiari
Mohammad

Mohammad

Petar
Petrovski

Volha Bryl

Yakov Babichenko

Oren Dean

Iqra Safder

Mohammad

Saeed-Ul
Hassan

Aaron Hunt

Margrét V.
Bjarnadóttir

Mohammad
Mengdie
Zhuang

Elaine Toms

Bo Wang

Yanshu Yu

Mike
Zwilling

Ying Kang

Bo Yu

Renato Gomes

David Buttler

Suman Kaylan Maity

Yang Zhou

Neal Young

Xiaobo Sun

Nahum Shimkin

Peng Yan

Yashu Liu

Saurabh Paul

Kezban Dilek Kisa

NED

RoleSim

StructSim-Max

StructSim-BC

GraphWave

struct2vec

(g) Young Researcher from Google

Caroline Lo

Stephen
P.Boyd

Marinka

Amy Siu

Dan
Jurafsky

Rahul Pandey

NED

Youngsuk Park

Caroline Lo

RoleSim

Dan
Jurafsky

Caroline Lo

Ali Shameli

StructSim-Max Marinka

Youngsuk
Park

Youngsuk
Park

Claire Donnat

Caroline Lo

Dan
Jurafsk

y

Marinka

Youngsuk Park

Thorsten Seyschab

Dan
Jurafsky

StructSim-BC

Meir Toledano

Jaewoo Lee
Bobby Jaros

Ryutaro Ichise

Jurek Leonhardt

GraphWave

struct2vec

Graham N. C. Kirby

Brandon Fain

Sunil Mohan
Yun Zhou

Marinka

(h) Student from Stanford

Heng Ji

Qi Li

Aidong Zhang

Changsung Kang

Jialu Liu

Qi Li

Meng Qu

Fangbo Tao

Lu Su

Wenwu Zhu

S. Papadimitriou

Deepak S.
Turaga

Xin Cao

Jianmin Wang

Bo Zong

Bo Zong

S. Papadimitriou

Xin Cao

Jianmin Wang

Deepak S.
Turaga

Shi Zhi
Jialu Liu

Yang Li

Jianmin Wang

Andrew Trotman

Meng Wang

Petros Drineas

Frank Hutter

Guoqiang Zhang

Mahmudur
Rahman

Ricardo Sousa
NED

RoleSim

StructSim-Max

StructSim-BC

GraphWave

struct2vec

(i) Student from UIUC

Fig. 9 Case study on the co-authorship graph: the top-5 most similar results of given researchers.

Efficient Structural Node Similarity Computation on Billion-scale Graphs 17

with all the four roles. Note that nodes with similar

roles should have close color and radius in Figure 9. The

results of IcebergRoleSim and StructSim-BCfare close to

RoleSim and StructSim-BCbrespectively, and thus are

omitted in Figure 9 for clear presentation. For sim-

plicity, in the following, we only include the perfor-

mance analysis regarding the roles of “Distinguished re-

searcher” and “Senior researcher”, which show that our

StructSim as a whole performs better than the other al-

gorithms in terms of returning more reasonable results.

The results for the other roles are similar and hence

omitted.

For the role “Distinguished researcher” in Fig-

ure 9(a) and Figure 9(b), StructSim and struct2vec per-

forms much better considering the similar positions and

H-index ranges of the returned researchers. In compar-

ison, RoleSim, NED, and GraphWave all return less

reasonable results. Specifically, in Figure 9(a), RoleSim
returns a much less influential “Student” as the top-1

result for a “Distinguished researcher” with big impact,

and NED and GraphWave return much less influential

researchers than the subject. In Figure 9(c), StructSim,

RoleSim, NED and struct2vec give similar results re-

garding research positions. However, when taking H-

index into account, StructSim and struct2vec return re-

searchers with higher H-index ranges than the other

algorithms. GraphWave, however, gives unpromising

results, with two less influential “Ph.D” students in top-

5 results for a “Distinguished researcher”.

As for the role “Senior researcher” in Figure 9(d),

StructSim and NED perform the best as they give the

most results with similar positions and close H-index

ranges, while the other algorithms perform not well ei-

ther in position (e.g., RoleSim and GraphWave) or

in H-index (e.g., struct2vec). In Figure 9(e), struct2vec
gives the most reasonable results, followed by StructSim
and GraphWave. RoleSim and NED do not perform

well in this case as the results differ significantly in both

position and H-index from the query researcher.

To deliver a more comprehensive analysis, we com-

pute the top-5 most similar results for 20 randomly

selected researchers, and the number of researchers of

each role distributes evenly. We then evaluate the effec-

tiveness of the algorithms using the distance metrics of

position and H-index (for accuracy), and the Normal-

ized Discounted Cumulative Gain (short as nDCG, for

ranking quality [14]). Intuitively, these metrics evalu-

ate how close the computed similar results are to the

subject regarding their positions and H-index values.

Next, we first introduce several basic definitions of the

metrics, then present the related results in Table 3.

We define P (x) and H(x), which return the level

of position and the range of H-index for the researcher

x, respectively. Specifically, there are total 4 position

levels from 1 to 4 indicating positions from “Student”

to “Distinguished professor”, and 7 ranges of H-index

from 1 to 7 as presented before. Thereafter, the posi-

tion distance (resp. the H-index distance) between two

nodes is defined as the absolute difference between their

P (·) (resp. H(·)) values. The position and H-index dis-

tances are denoted as distP and distH , respectively. We

also give each returned researcher the relevance score in

terms of position and H-index, where each of them has

three levels: 2-very relevant (dist = 0), 1-some relevant

(dist = 1) and 0-non relevant (dist > 1). We then label

each returned researcher with a relevance score as the

average of those of position and H-index.

Example 5 Suppose there are two researchers x1 and

x2. x1 is a professor with H-index 65, and x2 is a prin-

cipal scientist with H-index 57. Accordingly, we have

P (x1) = 4, H(x1) = 7 and P (x2) = 4, H(x2) = 6. The

position distance between x1 and x2 is distP (x1, x2) =

|4−4| = 0, and the H-index distance is distH(x1, x2) =

|7− 6| = 1. Thus, the relevance scores between x1 and

x2 in terms of position and H-index are 2 and 1, re-

spectively. As a result, the relevance score between re-

searchers x1 and x2 is 1.5.

Ideally, two researchers with the same role should

have the same research position and range of H-index,

and thus get 0 for both position distance and H-index

distance. We then use the average and standard de-

viation values of the absolute differences between the

returned results and the query researchers, denoted as

dA and dS respectively. dA and dS are calculated as

follows,

dA =

∑
x∈C d(x)

|C|
(11)

dS =

√∑
x∈C(d(x)− dA)2

|C| − 1
(12)

where C is a set including the 20 researchers in this pa-

per. d(x) is the total distance for each query researcher

x, namely d(x) =
∑5
i=1 dist(x,Rx[i]), in which Rx is

the node set including the top-5 similar results for node

x and Nx[i] is the ith element in Rx.

Table 3 lists the results of all the evaluated algo-

rithms. Note that for nDCG, the larger, the better,

while for dA and dS , the smaller, the better. We can

observe that the StructSim variants (StructSim-Max,
StructSim-BCb, and StructSim-BCf) give the best rank-

ing quality, as the nDCG value is larger, followed by

18 Xiaoshuang Chen et al.

Table 3 Ranking quality of different algorithms on Co-authorship graph. SS is short for StructSim. PD is short for position
distance, and HD is short for H-index distance.

Metric RoleSim IcebergRoleSim NED GraphWave struct2vec SS-Max SS-BCb SS-BCf

nDCG 0.40 0.43 0.47 0.42 0.40 0.48 0.48 0.48

dA (PD) 5.65 5.50 4.45 6.10 5.50 4.15 4.30 4.60

ds (PD) 3.22 3.28 3.35 2.20 3.97 3.50 3.40 3.28

dA (HD) 6.45 5.85 6.70 6.65 6.75 5.30 5.25 6.25

ds (HD) 5.27 4.92 6.04 6.12 4.30 3.50 3.70 5.44

NED, IcebergRoleSim, and GraphWave. For the dis-

tance metrics, other than dS of the position distance,

the variants of StructSim clearly outperform the other

baseline algorithms as they give the smallest distance

values. It is worth noting that StructSim-BCb(based

on the exact BC-Index) and StructSim-BCf (based on

FMS-Index) perform comparatively with StructSim-Max
regarding effectiveness in this case study, which indi-

cates that the techniques of BinCount matching and

FM-sketched-based indexing will not affect the effec-

tiveness of the algorithm.

Real-World Air-Traffic Networks. Here, we evalu-

ate the effectiveness of different algorithms on the clus-

tering and classification tasks. We use three real-world

benchmark datasets, i.e., Brazilian air-traffic network

(Brazil)5, European air-traffic network (Europe)6 and

American air-traffic network (USA)7 according to [41].

Every node in these datasets has a label related to its

topology [41], and thus we can use the labels as the

ground truth of roles. In summary, Brazil contains 131

nodes, 1,038 edges and 4 labels. Europe contains 399

nodes, 5,995 edges and 4 labels. USA contains 1,190

nodes, 13,599 edges and 4 labels, respectively.

We perform the clustering and classification tasks

on each dataset. The settings of each task are shown as

follows: (1) for the clustering task, we apply k-means

on the similarity scores computed by each algorithm

and set the number of clusters to 4 as each dataset

contains 4 labels. Accordingly, we use evaluation met-

rics of Normalized Mutual Information (NMI) [45], Ho-

mogeneity [42], and Completeness [42]. To be specific,

NMI [45] measures the agreement of the computed

clustering assignment versus the ground-truth assign-

ment. Homogeneity [42] computes the conditional en-

tropy of the computed clustering assignment given the

ground-truth assignment. Completeness [42] calculates

how many nodes within the same ground-truth cluster

are assigned to the same cluster; and (2) for the clas-

sification task, we use k-NN algorithm to predict the

5 http://www.anac.gov.br/
6 http://transtats.bts.gov/
7 http://ec.europa.eu/

label of each node based on its 5-nearest neighbors 8

(i.e., top-5 similar nodes to the target node). We then

adopt the metrics of accuracy and F1-score to evalu-

ate classification performance. Note that the values of

the metrics for both clustering and classification are the

higher, the better.

Table 4 reports the results of each algorithm for

clustering and classification. Note that NED cannot fin-

ish the all-pair computation in two days for Europe and

USA, denoted as “-” in Table 4. Specifically, we observe

that the size of certain 3-adjacent trees of these two

datasets exceeds 100, 000 nodes, and it fails naturally

because of the cubic complexity. According to Table 4,

StructSim variants get the most highest values on the

evaluation metrics across different datasets, and thus

perform better than both role similarity measures (i.e.,

RoleSim, IcebergRoleSim and NED) and embedding-

based algorithms (i.e., GraphWaveand struct2vec).
Additionally, as observed in the previous case study,

StructSim-BCband StructSim-BCfperform similarly to

StructSim-Max, while they are much more efficient to

compute as will be later evaluated.

Analysis of Parameters. According to Algorithm 1,

there are two parameters, i.e., k and wi for StructSim
computation, in which k is the number of levels consid-

ered in k-hop neighborhood subgraph, wi is a weighting

parameter computed by wi = df
i+1 , and 0 < df ≤ 1 is

a damping factor. We next study how k and damping

factor df influence the performance of StructSim.

Figure 10 reports the clustering and classification

results of StructSim variants on the Brazil dataset while

varying k and damping factor. Specifically, we vary the

damping factor from 0.2 to 1 (k is fixed to 4, the graph

diameter) and vary k from 1 to 4 (damping factor

is set to 0.8). According to Figure 10(a), we can ob-

serve that in the tasks of clustering and classification,

StructSim variants achieve the best performance at dif-

ferent damping factor values, and df = 0.6 - 0.8 is, in

general, a good setting for both tasks. Intuitively, a rel-

atively large damping factor makes the weighing factors

8 We tried k = 1, k = 5 and k = 8 for k-NN, and adopt
k = 5 as all the baselines get better results under this k value.

Efficient Structural Node Similarity Computation on Billion-scale Graphs 19

Table 4 Clustering and classification performance of different algorithms on Air-Traffic networks. SS indicatesStructSim.

Dataset Metric RoleSim IcebergRoleSim NED GraphWave struct2vec SS-Max SS-BCb SS-BCf

Brazil

NMI 0.476 0.486 0.478 0.120 0.388 0.489 0.486 0.480

Homogeneity 0.460 0.470 0.478 0.110 0.367 0.464 0.466 0.457

Completeness 0.492 0.502 0.479 0.131 0.411 0.516 0.507 0.504

Accuracy 0.710 0.740 0.733 0.504 0.702 0.756 0.763 0.748

F1-Score 0.709 0.746 0.732 0.504 0.704 0.754 0.763 0.748

Europe

NMI 0.311 0.303 - 0.011 0.300 0.339 0.299 0.331

Homogeneity 0.309 0.299 - 0.010 0.281 0.336 0.291 0.329

Completeness 0.313 0.306 - 0.011 0.320 0.341 0.308 0.334

Accuracy 0.589 0.612 - 0.381 0.586 0.581 0.591 0.574

F1-Score 0.59 0.614 - 0.367 0.583 0.58 0.59 0.572

USA

NMI 0.299 0.306 - 0.008 0.224 0.287 0.309 0.288

Homogeneity 0.288 0.302 - 0.007 0.206 0.282 0.299 0.283

Completeness 0.311 0.310 - 0.009 0.244 0.291 0.319 0.293

Accuracy 0.670 0.650 - 0.306 0.619 0.639 0.647 0.634

F1-Score 0.664 0.645 - 0.299 0.613 0.634 0.64 0.628

0.2 0.4 0.6 0.8 1.0
damping factor

0.35

0.40

0.45

0.50

0.55

N
M

I

0.2 0.4 0.6 0.8 1.0
damping factor

0.35

0.40

0.45

0.50

0.55

H
o
m

o
g
e
n
e
it

y

0.2 0.4 0.6 0.8 1.0
damping factor

0.35

0.40

0.45

0.50

0.55

C
o
m

p
le

te
n
e
s
s

0.2 0.4 0.6 0.8 1.0
damping factor

0.6

0.7

0.8
A

c
c
u
ra

c
y

0.2 0.4 0.6 0.8 1.0
damping factor

0.6

0.7

0.8

F
1
-S

c
o
re

(a) varying damping factor df

1 2 3 4

K

0.35

0.40

0.45

0.50

N
M
I

1 2 3 4
K

0.30

0.35

0.40

0.45

0.50

H
o
m
o
g
e
n
e
it
y

1 2 3 4
K

0.35

0.40

0.45

0.50

0.55

C
o
m
p
le
te
n
e
s
s

1 2 3 4
K

0.6

0.7

0.8

A
c
c
u
ra
c
y

1 2 3 4

K

0.6

0.7

0.8
F
1
-S
c
o
re

(b) varying K

Fig. 10 Clustering and classification performance of StructSim on the Brazil dataset while varying k and decay factor

decrease smoothly with respect to the number of lev-

els, and thus far neighbors can still contribute to the

computation. Based on Figure 10(b), we can observe

that the performance of StructSim variants generally

gets better when k becomes larger. This is reasonable

as larger k involves more neighbors and thus contains

more structural information. As a result, k = diameter

of the graph is a reasonable setting. Note that both k

and damping factor can also be set by users or be tuned

with training data for a specific application.

As discussed in Remark 2, in addition to the de-

gree ratio initialization (line 1 of Algorithm 1), our

StructSim framework also admits the degree-binary ini-

tialization. In the following, we study the performance

of our StructSim on the clustering and classification

tasks with different initialization functions, i.e., degree-

binary (DB) and degree-ratio (DR). Note that RoleSim
and IcebergRoleSim can be initialized by DB and DR

as well, and thus we include them for comparison. For

NED, GraphWave, and struct2vec, they are free from

initialization functions, and we omit their results ac-

cordingly.

Table 5 reports the results of each algorithm

with different initialization functions when perform-

ing clustering and classification tasks on the Brazil

dataset. We can observe that RoleSim, IcebergRoleSim,

20 Xiaoshuang Chen et al.

Table 5 Clustering and classification performance on Brazil dataset when using different initialization functions. DB and DR
denotes degree-binary and degree-ratio initializations respectively.

Metric Initialization RoleSim IcebergRoleSim StructSim-Max StructSim-BCb StructSim-BCf

NMI
DB 0.437 0.462 0.437 0.486 0.480

DR 0.476 0.486 0.489 0.486 0.480

Homogeneity
DB 0.428 0.447 0.424 0.469 0.456

DR 0.460 0.470 0.464 0.466 0.457

Completeness
DB 0.447 0.477 0.450 0.503 0.503

DR 0.492 0.502 0.516 0.507 0.504

Accuracy
DB 0.720 0.725 0.754 0.763 0.748

DR 0.710 0.740 0.756 0.763 0.748

F1-Score
DB 0.720 0.724 0.752 0.763 0.748

DR 0.709 0.746 0.754 0.763 0.748

and StructSim-Max give better performances with the

degree-ratio initialization. This is reasonable as degree-

ratio gives initial scores in a more fine-grained man-

ner, while degree-binary gives score 0 for all the node

pairs with different degree values even though some

pairs are close in degree. It is worth noting that with

the technique of BinCount matching, both StructSim-

BCband StructSim-BCfare not sensitive to initialization

functions. This is because the computation of ∆ values

for these algorithms does not rely on the initialization

function (Equation 5).

6.3 Efficiency

Datasets. We use 11 publicly available real-world

datasets, in which Blog is from [1,49] and the others

are downloaded from SNAP [30] and Webgraph [7].
These graphs are preprocessed as unlabelled and undi-

rected simple graphs. Table 6 lists the statistics of each

dataset. Column name gives the abbreviation to rep-

resent each dataset in the figures; n and m report the

number of nodes and the number of edges, respectively;

d and D show the average and maximum node degree in

each dataset; and the index size is the size of FMS-Index
for StructSim-BC.

Analysis of i-Hop Reachable Neighbors. Recall

Lemma 2, when a � b, the approximate ratio ap-

proaches ε with confidence 1 − δ, in which a and b

denote the number of i-hop reachable neighbors and

the number of (i− 1)-hop reachable neighbors, respec-

tively. In order to verify the assumption (a � b), we

randomly sample 10,000 nodes for each dataset, and

calculate the average number of i-hop reachable neigh-

bors for 0 ≤ i ≤ 6, shown in Figure 11. We omit the

first four smaller datasets as BFS-Index can be rapidly

constructed for them.

i=0 i=1 i=2 i=3 i=4 i=5 i=6
0.1

1

10

102

103

104

105

106

107

108
N

u
m

b
e
r

o
f

N
o
d
e
s

Fig. 11 The average number of i-hop reachable neighbors
for each dataset

According to Figure 11, one can find that the num-

ber of i-hop reachable neighbors almost increases ex-

ponentially with respect to i for i from 0 to 6 for the

datasets DB, CI, LJ, and UK. As for the datasets GO,

GS, and TW, exponential increasing happens within

the 4-hop reachable neighbors as well.

Performance of Index Construction. Figure 12

presents the index construction time of BC-Index and

FMS-Index for each dataset and INF is denoted for the

cases that cannot terminate within two days.

According to Figure 12, it is clear that the

FMS-Index is significantly faster than the BC-Index
with up to two orders of magnitude. Specifically, it runs

out of time to construct the BC-Index for the CI dataset

with less than 17 million edges, while the FMS-Index
can terminate on the dataset UK with more than 260

million edges. One outlier is the BL dataset where the

FMS-Index is slower than BC-Index, and this can be

explained based on the time complexity of BC-Index
(O(n2d)) and FMS-Index (O(rknd logD)): when n is

small, rk logD may be larger than n. In Figure 12,

we omit the results of GS and TW as they run out

of time to build both BC-Index and FMS-Index. Next,

we will evaluate how the parallelization can boost the

Efficient Structural Node Similarity Computation on Billion-scale Graphs 21

Table 6 Graph Statistics

Datasets Name n m d D Index Size

Blog BL 10,312 333,983 64.78 3,992 2.3 MB

Astroph AS 18,771 198,050 21.10 504 5.3 MB

Enron EN 36,692 183,831 10.02 1,383 10.8 MB

Epinions EP 75,879 405,740 10.69 3,044 29.0 MB

DBLP DB 317,080 1,049,866 6.62 343 108.5 MB

Google GO 875,713 4,322,051 9.87 6,332 426.0 MB

Cit CI 3,774,768 16,518,947 8.75 793 1.4 GB

LiveJournal LJ 5,203,763 48,709,621 18.72 15,016 2.5 GB

UK UK 18,483,186 261,787,258 28.33 194,955 12.4 GB

Gsh GS 30,809,122 489,675,683 31.79 2,175,983 17.7 GB

Twitter TW 41,652,230 1,202,513,046 57.74 2,997,487 27.1 GB

BL AS EN EP DB GO CI LJ UK
10

102

103

104

105

106

INF

R
u
n
n
in

g
 T

im
e
 (

s
)

Fig. 12 Time for index construction

construction of FMS-Index, as we have discussed in the

“parallelization” of Section 5.2.

Parallelization and Scalability. We first evaluate

constructing the FMS-Index in parallel for all datasets

in Figure 13(a). The results for several small datasets

are omitted as they are already fast sequentially. We

can observe that the performance is significantly im-

proved while adopting parallelization. In particular, for

the datasets GS and TW, FMS-Index can not terminate

sequentially in time, but it completes within 12 hours

while using 32 threads.

In Figure 13(b), we study the scalability of

FMS-Index construction by varying the number of

threads from 1 to 32 on datasets LJ (a social net-

work) and UK (a web graph). Observe that both curves

demonstrate a reasonable drop with the increasing of

parallelism, which is sharper at the start from 1 to 8

threads, and eventually becomes smoother due to the

cost of thread scheduling.

We then study the scalability by varying the den-

sities on the two largest datasets, i.e., GS and TW, as

shown in Figure 13(c). To do so, we randomly sample

20% to 100% edges from the original graph while pre-

serving the number of nodes, and then we construct the

subgraphs using the sampled edges. According to Fig-

ure 13(c), the performance scales almost linearly with

the densities, which conforms with the time complexity

analysis of FMS-Index construction (Section 5.2). This

also indicates the good scalability of StructSim with the

growth of the graph.

Performance of Query Processing. Figure 14 com-

pares the single-pair query performance between NED
and StructSim. We exclude RoleSim and IcebergRoleSim
here as they are mainly for the all-pair computation.

StructSim-BCb is also omitted as it performs the same

as StructSim-BCf after index construction. For a fair

comparison, we set k for StructSim the same as NED. In

this test, we randomly select 200 node pairs from each

dataset and report the average query time. INF in Fig-

ure 14 denotes the case that cannot terminate within

one day, and we omit the bars of the out-of-memory

cases.

From Figure 14, we can observe that StructSim-

Max is faster than NED on all the five datasets (i.e.,

AS, EN, DB, GO and CI) that NED can complete

the computation. Specifically, on datasets AS, EN, and

GO, StructSim-Max is significantly faster than NED
by 20 times of magnitude. This is because NED in-

volves duplicated nodes in the k-adjacent trees, and

it often ends up with larger searching space, while

our StructSim-Max adopts the k-hop neighborhood sub-

graph that avoids the exponential growth of NED’s k-

adjacent trees. Note that NED cannot terminate within

one day for dataset EP, and it fails due to out-of-

memory for BL dataset that contains only 10,000 nodes.

The culprit is the unbounded size of NED’s k-adjacent

trees. Both NED and StructSim-Max fail to query on

LJ, UK, GS, and TW datasets due to the costly max-

imum matching, while StructSim-BC succeeds in all

cases. Observe that StructSim-BC (without index) is

22 Xiaoshuang Chen et al.

GO CI LJ UK GS TW
datasets

10

102

103

104

105

R
u
n
n
in

g
 T

im
e
 (

s
)

(a) #threads=32

1 8 16 24 32
number of threads

0

1

2

3

4

5

6

R
u
n
n
in

g
 T

im
e
 (

1
0

4
s
)

(b) varying #threads

20 40 60 80 100
percentage

0

1

2

3

4

5

R
u
n
n
in

g
 T

im
e
 (

1
0

4
s
)

(c) varying densities, #threads=32

Fig. 13 Parallelization and scalability

BL AS EN EP DB GO CI LJ UK GS TW

10us

1ms

100ms

10s

1ks

INF

R
u
n
n
in

g
 T

im
e

Fig. 14 Query time on different datasets

significantly faster than NED and StructSim-Max with

up to five orders of magnitude, which shows the effi-

ciency of BinCount matching (Section 5.1). Specifically,

with a precomputed index, the query time of StructSim-

BCf (or StructSim-BCb) is further improved to less than

10 µs in all cases.

Performance of All-Pairs Computation. Fig-

ure 15 reports the all-pairs computation time for NED,

RoleSim, IcebergRoleSim and StructSim-BCf . StructSim-

BCb is omitted here as it performs the same as

StructSim-BCf after index construction. INF in Fig-

ure 15 denotes the case that cannot terminate within

three days, and we omit the bars of the out-of-memory

cases. Note that we do not consider datasets larger than

GO in this test because the all-pair computation time

is too lengthy.

According to Figure 15, NED fails in the com-

putation on all datasets due to either timeout (i.e.,

AS, EN and DB) or out-of-memory error (i.e., BL,

EP and GO). This is as expected because the size of

NED’s k-adjacent trees is unbounded, and it needs cu-

bic time complexity to compute a single pair of nodes.

RoleSim and IcebergRoleSim perform better than NED,

but they still cannot get results on DB and GO datasets

due to an out-of-memory error. The O(n2) space is

clearly the culprit. For StructSim-BCf , it needs only

O(kn logD) space to maintain the index and can be

BL AS EN EP DB GO
1

10

102

103

104

105

106

INF

R
u
n
n
in

g
 T

im
e
 (

s
)

Fig. 15 Time cost for all-pair similarity computation

built on all datasets. For efficiency, StructSim-BCf re-

moves a d2 term in time complexity when compared

with RoleSim. Thus, for the datasets with high average

degree, i.e., BL and AS, StructSim-BCf is faster than

RoleSim and IcebergRoleSim with up to 4 orders. As for

the datasets EN and EP, StructSim-BCf still performs

at least 1 order faster than IcebergRoleSim. Notably,

StructSim-BCf can finish the all-pair computation for

dataset BL within 5 seconds, while it takes RoleSim
and IcebergRoleSim several hours even one day to finish

the job.

7 Related Work

We review the related work from the following three

categories: structural node similarity algorithms, role

similarity algorithms, and structural node embeddings.

Structural Node Similarity Algorithms. SimRank
[23] is a representative structural node similarity mea-

sure with the philosophy “two nodes are similar if they

are related to similar neighbours”. Semantically, two

nodes’ SimRank value is equivalent to the probability

that the random walks from two nodes meet [35,47].

However, SimRank has problems when calculating role

similarity. Zheng et al. [59] proved that nodes’ SimRank
value is negatively correlated with the distance between

them, and two disconnected nodes always get SimRank

Efficient Structural Node Similarity Computation on Billion-scale Graphs 23

value 0. Zhao et al. [58] found the “Zero-SimRank”

issue, and Yu et al. [53] further proved that this is-

sue always happens for the nodes with no symmet-

ric in-link paths between them. However, two nodes

that are far away or even disconnected can have similar

roles and hence should get high role similarity. Besides,

SimRank encounters the “Connectivity Trait” problem

[17,56] that the SimRank value between two nodes a

and b must be smaller than 1
β , where β is their common

in-neighbors. As a result, the SimRank algorithm may

give a smaller similarity value for two nodes with more

common neighbors, which is obviously anti-intuitive.

In [24], the authors showed in the experiments that

SimRank performs poorly in computing role similarity.

Existing SimRank variants [4,28,31,33,50,52,54,55] ei-

ther encounter the “Zero-SimRank” issue or the “Con-

nectivity Trait” problem, and thus cannot be applied

to calculate role similarity as well. Other algorithms in-

cluding vertex similarity in [29] and nSimGram in [12]

are also not suitable to compute role similarity. The ver-

tex similarity fails to satisfy the “automorphism confir-

mation” and thus is not a role similarity metric, while

the nSimGram is a q-gram-based measure that is de-

signed specifically for node-labeled networks and not

appropriate to measure role similarity on the unlabeled

graphs.

Role Similarity Algorithms. Jin et al. [24] first for-

mally defined the properties that an admissible role

similarity metric should satisfy, among which automor-

phism confirmation is the most important one. RoleSim
[24] was proposed as the first admissible role similarity

metric, which computes all-pairs of node similarity iter-

atively and requires a costly maximum matching during
computation. IcebergRoleSim [25] was further proposed

to speed up the computation of RoleSim by pruning the

node pairs whose similarity values are guaranteed to

be smaller than a given threshold. NED [60] was orig-

inally proposed as a distance metric of nodes. While

being normalized to a similarity metric, we prove that

it is also a role similarity metric in this paper. Un-

like the aforementioned structural node similarity al-

gorithms, RoleSim, IcebergRoleSim, and NED free from

the “Zero-SimRank” and “Connectivity Trait” prob-

lems, and all of them have the good merit of indicat-

ing automorphism (or isomorphism). However, RoleSim,

IcebergRoleSim, and NED have severe performance bot-

tlenecks and cannot be scalable to handle large real-

world graphs.

Structural Node Embeddings. Node embedding [3,

6,8,9,10,38,40,48] aims at learning a vector representa-

tion of each node in the graph to reflect its information

(e.g., structural information), which can then be used to

compute node similarity. Typical node embedding algo-

rithms, i.e., DeepWalk [39], LINE [46] and node2vec [19]

are based on random walks and have the intuition that

two nodes have similar embeddings if they are highly

possible to co-occur on short random walks over graphs

[20]. There are also some other attempts. For example,

RolX [21] was proposed to discover the roles of nodes in

the networks. struc2vec [41] learned the embeddings

of the nodes by performing random walks on a gener-

ated multilayer graph. SNS [37] was proposed to com-

bine the information of neighbors and graphlet statis-

tics to compute node embeddings. However, struc2vec

and SNS cannot guarantee the automorphism confirma-

tion. GraphWave [15] utilized the spectral wavelets

to learn the node embeddings and proved a theoreti-

cal bound for the difference between the embeddings

of equivalent nodes. Note that our work is orthogonal

to node embeddings. On the one hand, embedding ap-

proaches can use the role similarity metrics as a learn-

ing feature. On the other hand, we can adopt the node

embeddings to compute the initial similarity.

8 Conclusion

In this paper, we present a new framework, namely

StructSim, to compute nodes’ role similarity. Different

from the SimRank-based iterative framework, StructSim
follows the hierarchical scheme, which adopts the k-

neighborhood subgraph to reflect the structural infor-

mation. Moreover, StructSim admits a precomputed in-

dex to better support both the ad-hoc queries and all-

pair query, and we further propose an FM-sketch-based

technique to build the index efficiently. The extensive

experimental results on the real-world graphs demon-

strate that StructSim achieves a more effective and ef-

ficient role similarity computation and is the only one

that can compute role similarity on graphs with billions

of edges.

In the future, we plan to do the following two works.

First, considering that end-users are more interested in

the top-k answers among a huge answer space, it is

worth proposing efficient techniques to process top-k

queries. Second, attributed graphs become prevalent in

various domains (i.e., social networks, web search, and

social media) with the proliferation of the world wide

web, and thus we plan to investigate calculating role

similarity on heterogeneous graphs.

Acknowledgements. Xuemin Lin is supported by

NSFC61232006, 2018YFB1003504, ARC DP200101338,

ARC DP180103096 and ARC DP170101628. Lu Qin is

supported by ARC FT200100787.

24 Xiaoshuang Chen et al.

References

1. BlogCatalog. https://github.com/quark0/TAE/tree/

master/data/BlogCatalog-dataset.
2. Optimization and approximation in deterministic se-

quencing and scheduling: a survey. volume 5 of Annals
of Discrete Mathematics, pages 287 – 326. 1979.

3. A. Ahmed, N. Shervashidze, S. M. Narayanamurthy,
V. Josifovski, and A. J. Smola. Distributed large-scale
natural graph factorization. In Proceedings of the 22nd
international conference on World Wide Web, pages 37–
48, 2013.

4. I. Antonellis, H. Garcia-Molina, and C. Chang. Sim-
rank++: query rewriting through link analysis of the click
graph. Proceedings of the VLDB Endowment, 1(1):408–
421, 2008.

5. D. Avis. A survey of heuristics for the weighted matching
problem. Networks, 13(4):475–493, 1983.

6. M. Belkin and P. Niyogi. Laplacian eigenmaps and spec-
tral techniques for embedding and clustering. In Ad-
vances in Neural Information Processing Systems, NIPS,
pages 585–591, 2001.

7. P. Boldi and S. Vigna. The webgraph framework I: com-
pression techniques. In Proceedings of the 13th interna-
tional conference on World Wide Web, pages 595–602,
2004.

8. S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph repre-
sentations with global structural information. In Proceed-
ings of the 24th ACM International Conference on In-
formation and Knowledge Management, pages 891–900,
2015.

9. S. Cao, W. Lu, and Q. Xu. Deep neural networks for
learning graph representations. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence,
pages 1145–1152, 2016.

10. B. P. Chamberlain, J. R. Clough, and M. P. Deisenroth.
Neural embeddings of graphs in hyperbolic space. CoRR,
abs/1705.10359, 2017.

11. X. Chen, L. Lai, L. Qin, and X. Lin. Structsim: Querying
structural node similarity at billion scale. In 36th IEEE
International Conference on Data Engineering, ICDE
2020, Dallas, TX, USA, April 20-24, 2020, pages 1950–
1953, 2020.

12. A. Conte, G. Ferraro, R. Grossi, A. Marino, K. Sadakane,
and T. Uno. Node similarity with q-grams for real-
world labeled networks. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 1282–1291, 2018.

13. D. Davis, Ö. N. Yaveroğlu, N. Malod-Dognin, A. Sto-
jmirovic, and N. Pržulj. Topology-function conservation
in protein–protein interaction networks. Bioinformatics,
31(10):1632–1639, 2015.

14. C. Distinguishability. A theoretical analysis of normal-
ized discounted cumulative gain (ndcg) ranking mea-
sures.

15. C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec. Learn-
ing structural node embeddings via diffusion wavelets.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 1320–1329, 2018.

16. P. Flajolet and G. N. Martin. Probabilistic counting al-
gorithms for data base applications. Journal of computer
and system sciences, 31(2):182–209, 1985.

17. D. Fogaras and B. Rácz. Scaling link-based similarity
search. In Proceedings of the 14th international confer-
ence on World Wide Web, pages 641–650, 2005.

18. Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka.
Efficient search algorithm for simrank. In 29th IEEE In-
ternational Conference on Data Engineering, pages 589–
600, 2013.

19. A. Grover and J. Leskovec. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 855–864, 2016.

20. W. L. Hamilton, R. Ying, and J. Leskovec. Representa-
tion learning on graphs: Methods and applications. IEEE
Data Eng. Bull., 40(3):52–74, 2017.

21. K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong,
S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, and L. Li.
Rolx: structural role extraction & mining in large graphs.
In The 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1231–
1239, 2012.

22. K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-
Rad, H. Tong, and C. Faloutsos. It’s who you know: graph
mining using recursive structural features. In Proceedings
of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 663–671,
2011.

23. G. Jeh and J. Widom. Simrank: a measure of structural-
context similarity. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 538–543, 2002.

24. R. Jin, V. E. Lee, and H. Hong. Axiomatic ranking of
network role similarity. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 922–930, 2011.

25. R. Jin, V. E. Lee, and L. Li. Scalable and axiomatic
ranking of network role similarity. ACM Trans. Knowl.
Discov. Data, 8(1):3:1–3:37, 2014.

26. J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604–632, 1999.

27. H. W. Kuhn. The hungarian method for the assignment
problem. In 50 Years of Integer Programming 1958-2008,
pages 29–47. 2010.

28. M. Kusumoto, T. Maehara, and K. Kawarabayashi. Scal-
able similarity search for simrank. In Proceedings of the
2014 International Conference on Management of Data,
pages 325–336, 2014.

29. E. A. Leicht, P. Holme, and M. E. Newman. Vertex
similarity in networks. Physical Review E, 73(2):026120,
2006.

30. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/

data, June 2014.
31. C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu.

Fast computation of simrank for static and dynamic in-
formation networks. In Proceedings of the 13th Inter-
national Conference on Extending Database Technology,
pages 465–476, 2010.

32. X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:
The k most representative skyline operator. In Proceed-
ings of the 23rd International Conference on Data En-
gineering, pages 86–95, 2007.

33. Z. Lin, M. R. Lyu, and I. King. Matchsim: a novel
neighbor-based similarity measure with maximum neigh-
borhood matching. In Proceedings of the 18th ACM Con-
ference on Information and Knowledge Management,
pages 1613–1616, 2009.

34. D. Liu, J. Huang, and C. Lin. Recommendation with
social roles. IEEE Access, 6:36420–36427, 2018.

35. Y. Liu, B. Zheng, X. He, Z. Wei, X. Xiao, K. Zheng,
and J. Lu. Probesim: scalable single-source and top-k

https://github.com/quark0/TAE/tree/master/data/BlogCatalog-dataset
https://github.com/quark0/TAE/tree/master/data/BlogCatalog-dataset
http://snap.stanford.edu/data
http://snap.stanford.edu/data

Efficient Structural Node Similarity Computation on Billion-scale Graphs 25

simrank computations on dynamic graphs. Proceedings
of the VLDB Endowment, 11(1):14–26, 2017.

36. F. Lorrain and H. C. White. Structural equivalence of
individuals in social networks. J. mathematical sociology,
1(1):49–80, 1971.

37. T. Lyu, Y. Zhang, and Y. Zhang. Enhancing the network
embedding quality with structural similarity. In Proceed-
ings of the 2017 ACM on Conference on Information
and Knowledge Management, pages 147–156, 2017.

38. M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmet-
ric transitivity preserving graph embedding. In Proceed-
ings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages
1105–1114, 2016.

39. B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: on-
line learning of social representations. In The 20th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 701–710, 2014.

40. B. Perozzi, V. Kulkarni, and S. Skiena. Walklets: Multi-
scale graph embeddings for interpretable network classi-
fication. CoRR, abs/1605.02115, 2016.

41. L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo.
struc2vec: Learning node representations from structural
identity. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 385–394, 2017.

42. A. Rosenberg and J. Hirschberg. V-measure: A condi-
tional entropy-based external cluster evaluation measure.
In Proceedings of the 2007 joint conference on empir-
ical methods in natural language processing and com-
putational natural language learning (EMNLP-CoNLL),
pages 410–420, 2007.

43. R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson.
Modeling dynamic behavior in large evolving graphs. In
Sixth ACM International Conference on Web Search and
Data Mining, pages 667–676, 2013.

44. M. A. Serrano and M. Boguná. Topology of the world
trade web. Physical Review E, 68(1):015101, 2003.

45. A. Strehl and J. Ghosh. Cluster ensembles—a knowledge
reuse framework for combining multiple partitions. Jour-
nal of machine learning research, 3(Dec):583–617, 2002.

46. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and
Q. Mei. LINE: large-scale information network embed-
ding. In Proceedings of the 24th International Conference
on World Wide Web, pages 1067–1077, 2015.

47. B. Tian and X. Xiao. SLING: A near-optimal index struc-
ture for simrank. In Proceedings of the 2016 International
Conference on Management of Data, pages 1859–1874,
2016.

48. D. Wang, P. Cui, and W. Zhu. Structural deep network
embedding. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1225–1234, 2016.

49. X. Wang, L. Tang, H. Gao, and H. Liu. Discovering over-
lapping groups in social media. In 2010 IEEE interna-
tional conference on data mining, pages 569–578. IEEE,
2010.

50. Y. Wang, X. Lian, and L. Chen. Efficient simrank track-
ing in dynamic graphs. In 2018 IEEE 34th International
Conference on Data Engineering, pages 545–556, 2018.

51. S. Wasserman and K. Faust. Social network analysis:
Methods and applications, volume 8. Cambridge univer-
sity press, 1994.

52. W. Yu, X. Lin, and W. Zhang. Towards efficient simrank
computation on large networks. In 29th IEEE Interna-
tional Conference on Data Engineering, pages 601–612,
2013.

53. W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More
is simpler: Effectively and efficiently assessing node-pair
similarities based on hyperlinks. Proceedings of the
VLDB Endowment, 7(1):13–24, 2013.

54. W. Yu, X. Lin, W. Zhang, J. Pei, and J. A. McCann. Sim-
rank*: effective and scalable pairwise similarity search
based on graph topology. The VLDB Journal, 28(3):401–
426, 2019.

55. W. Yu and J. A. McCann. Efficient partial-pairs sim-
rank search for large networks. Proceedings of the VLDB
Endowment, 8(5):569–580, 2015.

56. W. Yu and J. A. McCann. High quality graph-based
similarity search. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 83–92, 2015.

57. K. Zhang, R. Statman, and D. Shasha. On the editing
distance between unordered labeled trees. Information
processing letters, 42(3):133–139, 1992.

58. P. Zhao, J. Han, and Y. Sun. P-rank: a comprehensive
structural similarity measure over information networks.
In Proceedings of the 18th ACM Conference on Informa-
tion and Knowledge Management, pages 553–562, 2009.

59. W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Ef-
ficient simrank-based similarity join over large graphs.
Proceedings of the VLDB Endowment, 6(7):493–504,
2013.

60. H. Zhu, X. Meng, and G. Kollios. NED: an inter-graph
node metric based on edit distance. Proceedings of the
VLDB Endowment, 10(6):697–708, 2017.

	Introduction
	PRELIMINARIES
	Existing Works
	The StructSim Framework
	Efficient StructSim Computation
	Experimental Evaluation
	Related Work
	Conclusion

