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Abstract—Simulation and its variants (e.g., bisimulation and
degree-preserving simulation) are useful in a wide spectrum of
applications. However, all simulation variants are coarse “yes-or-
no” indicators that simply confirm or refute whether one node
simulates another, which limits the scope and power of their
utility. Therefore, it is meaningful to develop a fractional χ-
simulation measure to quantify the degree to which one node
simulates another by the simulation variant χ. To this end,
we first present several properties necessary for a fractional χ-
simulation measure. Then, we present FSimχ, a general fractional
χ-simulation computation framework that can be configured
to quantify the extent of all χ-simulations. Comprehensive
experiments and real-world case studies show the measure to
be effective and the computation framework to be efficient.

I. INTRODUCTION

Consider two directed graphs G1 and G2 with labeled nodes
from the sets V1 and V2, respectively. A simulation [30]
relation R ⊆ V1× V2 is a binary relation over V1 and V2. For
each node pair (u, v) in R (namely, u is simulated by v), each
u’s out-neighbor1 is simulated by one of v’s out-neighbors,
and the same applies to in-neighbors. An illustration of this
concept is shown below.
Example 1. As shown in Figure 1, node u is simulated by node
v2, as they have the same label, and each u’s out-neighbor
can be simulated by the same-label out-neighbor of v2 (u has
no in-neighbors). Note that the two hexagonal nodes in P are
simulated by the same hexagonal node in G2. Similarly, u is
simulated by v3 and v4. However, u can not be simulated by
v1, as the pentagonal neighbor of u cannot be simulated by
any neighbor of v1.

The original definition of simulation put forward by Milner
in 1971 [32] only considered out-neighbors. But, in 2011,
Ma et al. [30] revised the definition to consider in-neighbors,
making it capture more topological information. Additionally,
different variants of simulation have emerged over the years,
each with its own constraint(s). For example, on the basis that
R is a simulation relation, bisimulation [33] further requires
that R−1 is also a simulation, where R−1 denotes the converse
relation of R (i.e., R−1 = {(v, u)|∀(u, v) ∈ R}); and degree-
preserving simulation [40] requires that two neighbors of u
cannot be simulated by the same neighbor of v.

Applications. Simulation and its variants are important rela-
tions among nodes, and have been adopted in a wide range
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1A node u′ is an out-neighbor of u, if there is an outgoing edge from u

to u′ in G. Similarly, u′′ is an in-neighbor of u, if an edge from u′′ to u
presents.
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Fig. 1. Example graphs. A node’s shape denotes its label.

of applications. For example, simulation and degree-preserving
simulation are shown to be effective in graph pattern matching
[15], [30], [31], [40], and a node in the data graph is considered
to be a potential match for a node in the query graph if it
simulates the query node. Bisimulation has been applied to
compute RDF graph alignment [11] and graph partition [19],
[37], [44]. Generally, two nodes will be aligned or be placed in
the same partition if they are in a bisimulation relation. Other
applications include data retrieval [34], graph compression
[16] and index construction [17], [23], [36], etc.

Motivations. Despite their numerous valuable uses, simulation
and its variants are all coarse “yes-or-no” indicators. That is,
simulation and its variants can only answer whether node v
can fully simulate node u; they cannot tell us whether v might
be able to partially or even very nearly (i.e., approximately)
simulate u. This coarseness raises two practical issues. First,
there often exist some nodes that nearly simulate u in real-
world graphs, which either naturally present in the graphs or
are consequences of data errors (a common issue by data noise
and mistakes of collecting data). However, simulation and its
variants cannot catch these nodes and cause loss of potential
results. Second, the coarseness makes it inappropriate to apply
simulation and its variants to applications that naturally require
fine-grained evaluation, such as node similarity measurement.
Example 2 provides a real-life illustration of these issues.
Example 2. We consider the application of simulation to
determine whether or not a poster A is simulated by another
poster B in terms of their design elements (e.g., color, layout,
font, and structure). For example, when compared with the
poster P1 in Figure 2(b), the candidate poster P in Figure 2(a)
only slightly differs in the font and font style. Hence, it is highly
suspected as a case of plagiarism [7]. Nevertheless, due to a
minor change of design elements, there is no exact simulation
relation between posters P and P1, and thus exact simulation
can not be used to discover such similarity. As a result, it
is more desirable to develop a mechanism to capture the
similarity between two posters via the degree of approximate
simulation (some fine-grained measurement), instead of simply
using the exact simulation.
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Fig. 2. Motivating example. Figures (c) and (d) are graphs representing the
posters in (a) and (b), respectively. Nodes are marked with their labels. An
edge from nodes u to v indicates that the poster u has a design element v.

In general, it is of practical need to develop a mechanism
to quantify the cases of approximate simulation to remedy the
impacts of the “yes-or-no” semantics. Such quantification can
not only open up a host of possibilities for using simulation but
also make the results of simulation more effective and robust.
Although the simulation variants differ in certain properties,
they are actually derived from a common foundation, namely
the simulation relation [32]. Consequently, instead of develop-
ing a quantification technique independently and individually
for each variant, it is more desirable to devise a general
framework that works for all simulation variants. Aside from
the obvious benefits of less redundancy, developing a unified
framework requires a systematic study of the properties of the
different simulation variants. Not only has this not been done
before, doing so may help to inspire new variants.

Our Contributions. We propose the fractional χ-simulation
framework that quantifies the extent of simulation and its
variants in the range of [0, 1]. Our main contributions are as
follows.

(1) A unified definition of χ-simulation. From a systematic
study of the properties of simulation and its variants, we distill
the base definition of simulation and its variants into a unified
definition called χ-simulation. Further, we discover and name
a new simulation variant - bijective simulation. Theoretically,
bijective simulation is akin to the well-known Weisfeiler-
Lehman isomorphism test [38] (Section IV-C). Practically, its
fractional form (contribution 2) is more effective than the
existing models regarding node similarity measurement, as
detailed in Section V-D.

(2) A general framework FSimχ for computing fractional
χ-simulation. To quantify the degree to which one node
simulates another by a χ-simulation, we propose the concept
of fractional χ-simulation and identify a list of properties
that a fractional χ-simulation measure should satisfy. Then,
we present a general computation framework, namely FSimχ,
which can be configured to compute fractional χ-simulation
for all χ-simulations with the properties satisfied. FSimχ is an

TABLE I
TABLE OF NOTATIONS

Notation Description
G = (V,E, `) a node-labeled directed graph
V (G)/E(G) the node/edge set of graph G

`(·) a labeling function
N+
G (u)/N−G (u) the out-neighbors/in-neighbors of node u in G
d+
G(u)/d−G(u) the out-degree/in-degree of node u in G

dG the average degree of G
D+
G/D

−
G the maximum out-degree/in-degree of G

iterative framework that computes the fractional χ-simulation
scores for all pairs of nodes over two graphs. Furthermore, we
show the relations of FSimχ to several well-known concepts,
including node similarity measures (i.e., SimRank [21] and
RoleSim [22]) and an approximate variant of bisimulation (i.e.,
k-bisimulation [8], [28], [29], [44]), in Section IV-C.

(3) Extensive experiments and case studies. We perform em-
pirical studies to exhibit that FSimχ is robust to parameter
tuning and data errors, and is efficient to compute on real-
world graphs. We further conduct three case studies to eval-
uate FSimχ’s potential for subgraph pattern matching, node
similarity measurement, and RDF graph alignment. Based
on these studies, we reach the following conclusions. First,
fractional χ-simulation can remedy the “yes-or-no” semantics
of χ-simulation, and it significantly improves the effectiveness
of χ-simulation in the related applications, e.g., simulation
in subgraph pattern matching. Second, fractional bijective
simulation (proposed in this paper) is a highly effective way
of measuring node similarity. Finally, the FSimχ framework
provides a flexible way to study the effectiveness of different
simulation variants, and thus can be used as a tool to help
identify the best variant for a specific application.

II. SIMULATION AND ITS VARIANTS

Data Model. Consider a node-labeled directed graph G =
(V,E, `), where V (G) and E(G) denote the node set and
edge set, respectively (or V and E when the context is clear).
Σ is a set of string labels, and ` : V → Σ is a labeling
function that maps each node u to a label `(u) ∈ Σ. N+

G (u) =
{u′|(u, u′) ∈ E(G)} denotes node u’s out-neighbors and,
likewise, N−G (u) = {u′|(u′, u) ∈ E(G)} denotes its in-
neighbors. Let d+

G(u) = |N+
G (u)| and d−G(u) = |N−G (u)|

be the out- and in-degrees of node u, and let dG, D+
G and

D−G denote the average degree, maximum out-degree and
maximum in-degree of G, respectively. A summary of the
notations used throughout this paper appears in Table I.

Simulation Variants. The first step in developing a unified
definition of simulation and its variants is to formally define
simulation as the foundation of all its variants.
Definition 1. (SIMULATION) Given the graphs G1 =
(V1, E1, `1) and G2 = (V2, E2, `2)2, a binary relation R ⊆
V1 × V2 is a simulation if, for ∀(u, v) ∈ R, it satisfies that:
(1) `1(u) = `2(v),
(2) ∀u′ ∈ N+

G1
(u),∃v′ ∈ N+

G2
(v) such that (s.t.) (u′, v′) ∈ R,

(3) ∀u′′ ∈ N−G1
(u), ∃v′′ ∈ N−G2

(v) s.t. (u′′, v′′) ∈ R.
For clarity, u is always a node from V1, and v is always a

node from V2 in this paper.

2G1 = G2 is allowed in this paper.
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The variants of simulation are based on Definition 1 but
have additional constraints. Definition 2 below provides a
summary of several common simulation variants. However,
one exceptional variant, strong simulation [30], must be dis-
cussed first. Strong simulation is designed for subgraph pattern
matching. In brief, strong simulation exists between the query
graph Q and data graph G if a subgraph G[v, δQ] of G
satisfies the following criteria: (1) a simulation relation R
exists between Q and G[v, δQ]; and (2) R contains node
v and all nodes in Q. Note that the subgraph G[v, δQ] is
an induced subgraph that includes all nodes whose shortest
distances to v in G are not larger than the diameter δQ of Q.
In essence, strong simulation essentially performs simulation
(Definition 1) multiple times, and so does not need to be
specifically defined or further discussed.

Definition 2, which follows, shows how χ-simulation sum-
marizes the base definition of simulation but also considers
its variants. The definition below includes two notable ones in
degree-preserving simulation [40] and bisimulation [33].
Definition 2. (χ-SIMULATION) A simulation relation R by
Definition 1 is further a χ-simulation relation, which corre-
sponds to

• Simulation (χ = s): no extra constraint;
• Degree-preserving simulation (χ = dp): if (u, v) ∈ R,

(1) there exists an injective function λ1 : N+
G1

(u) →
N+
G2

(v), s.t. ∀u′ ∈ N+
G1

(u), (u′, λ1(u′)) ∈ R; and (2)
there exists an injective function λ2 : N−G1

(u)→ N−G2
(v),

s.t. ∀u′′ ∈ N−G1
(u), (u′′, λ2(u′′)) ∈ R;

• Bisimulation (χ = b): if (u, v) ∈ R, (1) ∀v′ ∈ N+(v),
∃u′ ∈ N+(u) s.t. (u′, v′) ∈ R; and (2) ∀v′′ ∈ N−(v),
∃u′′ ∈ N−(u) s.t. (u′′, v′′) ∈ R.

Node u is χ-simulated by node v (or v χ-simulates u),
denoted as u χ v, if there is a χ-simulation relation R with
(u, v) ∈ R. Specifically, if u  χ v implies v  χ u (i.e.,
χ = b), we may use u ∼χ v directly.

Example 3. Recall that in Example 1, u is simulated by
nodes v2, v3 and v4 in Figure 1. However, u cannot be dp-
simulated by v2 because u has two hexagonal neighbors and
v2 does not, which contradicts the requirement of “injective
function”; Similarly, u cannot be b-simulated by v3, as v3’s
square neighbor fails to simulate any neighbor of u.

Inspired by the constraints of dp- and b-simulations, we
find that a χ-simulation may have the following properties:
(1) injective neighbor mapping (or IN-mapping for short),
i.e., ∀(u, v) ∈ R, two different neighbors (either in or out)
of u cannot be mapped to the same neighbor of v; and (2)
converse invariant, i.e., where R−1 = {(v, u)|∀(u, v) ∈ R}
is a χ-simulation if R is a χ-simulation. By Definition 2, dp-
simulation has the property of IN-mapping, while b-simulation
has converse invariant. The properties of the exiting simulation
variants are listed in Figure 3(a).
Remark 1. Given a χ-simulation with the property of converse
invariant, if u  χ v, then v  χ u must hold. Therefore, in
Definition 2, we have u b v implies v  b u.

A New Variant: Bijective Simulation. In compiling Fig-
ure 3(a), we realize that no simulation variant had both IN-

Variants
Properties

IN-mapping Converse Invariant
s-simulation [30] ⨉ ⨉

dp-simulation [40] ✓ ⨉
b-simulation [33] ⨉ ✓

bj-simulation [this paper] ✓ ✓
(a) Properties of each simulation variant ( ✓ for yes, ⨉ for no) (b) The strictness among 𝜒

s

dp b

bj

Fig. 3. The summarization of all simulation variants.

mapping and converse invariant. This motivated us to define
one. Called bijective simulation, our definition follows.
Definition 3. (BIJECTIVE SIMULATION) A simulation rela-
tion R ⊆ V1 × V2 is a bijective simulation (χ = bj), if R is
a degree-preserving simulation and the functions λ1 and λ2,
as defined in Definition 2, are further to be surjective (i.e., λ1

and λ2 are bijective). Bijective simulation is considered in the
χ-simulation (Definition 2) by letting χ = bj.

Compared to dp-simulation, bj-simulation requires that the
mapping functions of the neighbors to be bijective. In other
words, each pair of neighbors in a bj-simulation must be
mapped one by one. It’s not hard to verify that bj-simulation
has the properties of both IN-mapping and converse invariance.

Figure 3(b) shows the strictness among the simulation
variants, where a “more-strict” edge from a χ1- to a χ2-
simulation means that the χ1-simulation must also be a χ2-
simulation. Such strictness among the variants can also be
inferred from Figure 1. More specifically, given u  bj v4, it
holds that u χ v4, ∀χ ∈ {s, b, dp}.
Summary. In this paper, we consider all together four simula-
tion variants: simulation (χ = s), degree-preserving simulation
(dp), bisimulation (b), and bijective simulation (bj). With
a systematic study of existing simulation variants, we have
discovered bijective simulation as a new variant. We believe
that our work will further inspire more variants.

Hereafter, we may omit the χ in χ-simulation, referring sim-
ply to simulation. To avoid ambiguity, we call the simulation
relation in Definition 1 as simple simulation.

III. FRACTIONAL SIMULATION

To quantify the degree to which one node simulates the
other node, we now set out the properties fractional χ-simu-
lation should satisfy and the framework for its computation.

A. The Properties of Fractional Simulation
Definition 4. (FRACTIONAL χ-SIMULATION) Given graphs
G1 = (V1, E1, `1) and G2 = (V2, E2, `2), and two nodes
u ∈ V1 and v ∈ V2, the fractional χ-simulation of u and v
quantifies the degree to which u is approximately χ-simulated
by v, denoted as FSimχ(u, v). FSimχ(u, v) should satisfy:
P1. Range: 0 ≤ FSimχ(u, v) ≤ 1;
P2. Simulation definiteness: u is χ-simulated by v, i.e.,

u χv, if and only if FSimχ(u, v) = 1;
P3. χ-conditional symmetry: if the χ-simulation has the

property of converse invariant (i.e., u  χ v implies
v  χ u), then FSimχ(u, v) should be symmetric, i.e.,
FSimχ(u, v) = FSimχ(v, u).

A computation scheme FSimχ is well-defined for fractional
χ-simulation, if for ∀(u, v) ∈ V1 × V2, FSimχ(u, v) satisfies
all three of the above properties.
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Property 1 is a common practice. Property 2 bridges the
fractional simulation and the corresponding simulation variant.
The sufficient condition reflects the fact that u being χ-
simulated by v stands for the maximum degree of their
simulation, while the necessary condition (only if) makes
fractional simulation imply the case of simulation. Property 3
means the variants with converse invariance (i.e., bisimulation
and bijective simulation) can be used as similarity measures.

B. Framework to Compute Fractional Simulation
We propose the FSimχ framework to compute the fractional

χ-simulation scores for all pairs of nodes across two graphs.
The FSimχ is a non-trivial framework because it needs to
account for the properties of all simulation variants as well
as convergence in general. Note that hereafter, we use FSimχ

interchangeably to indicate the framework and a χ-simulation
value.

Recall from Definition 2 that a node u is χ-simulated by
node v if they have the same label, and their neighbors are χ-
simulated accordingly. Thus, we have divided the computation
of FSimχ(u, v) into three parts as follows:

FSimχ(u, v) =

w+ FSimχ(N+
G1

(u), N+
G2

(v))︸ ︷︷ ︸
score by out-neighbors

+w− FSimχ(N−G1
(u), N−G2

(v))︸ ︷︷ ︸
score by in-neighbors

+ (1− w+ − w−) L(u, v)︸ ︷︷ ︸
score by node label

,

(1)

where FSimχ(N+
G1

(u), N+
G2

(v)) and FSimχ(N−G1
(u), N−G2

(v))
denote the scores contributed by the out- and in-neighbors of
u and v respectively. w+ and w− are weighting factors that
satisfy 0 ≤ w+ < 1, 0 ≤ w− < 1 and 0 < w+ + w− < 1;
and L(·) is a label function that evaluates the similarity of
two nodes’ labels. Specifically, if there is no prior knowledge
about the labels, L(·) can be derived by a wide variety of string
similarity functions, such as an indicator function, normalized
edit distance, Jaro-Winkler similarity, etc. Alternatively, the
user could specify/learn the similarities of the label semantics.
Since the latter case is beyond the scope of this paper, in the
following, we assume no prior knowledge about the labels.

In Equation 1, we need to compute the χ-simulation score
between two node sets S1 and S2 (the respective neighbors of
each node pair). To do so, we derive:

FSimχ(S1, S2) =

∑
(x,y)∈Mχ(S1,S2) FSimχ(x, y)

Ωχ(S1, S2)
, (2)

where Ωχ denotes the normalizing operator that returns a
positive integer w.r.t. S1 and S2. Mχ denotes the mapping
operator, which returns a set of node pairs defined as:

Mχ(S1, S2; fχ) = {(x, y) | x ∈ X, y = fχ(x) ∈ Y },

where X ⊆ S1 ∪ S2 and Y ⊆ S1 ∪ S2. fχ : X → Y is
a function that is subject to certain constraints regarding the
simulation variant χ. These constraints include the domain
and codomain of fχ, and the properties that fχ should satisfy
(e.g., that fχ is an injective function). Note that, for clear
presentation, fχ is always omitted from the mapping operator.
HowMχ and Ωχ are configured to deploy different simulation
variants for the framework is demonstrated in Section IV.

TABLE II
RESULTS OF WHETHER u IS SIMULATED BY vi (i ∈ {1, 2, 3, 4}) IN

FIGURE 1 REGARDING EACH SIMULATION VARIANT (X FOR YES, × FOR
NO) AND THE CORRESPONDING FRACTIONAL SCORES (IN BRACKET)

Variants (u, v1) (u, v2) (u, v3) (u, v4)
s-simulation × (0.85) X (1.00) X (1.00) X (1.00)
dp-simulation × (0.72) × (0.85) X (1.00) X (1.00)
b-simulation × (0.78) X (1.00) × (0.93) X (1.00)
bj-simulation × (0.72) × (0.81) × (0.94) X (1.00)

Example 4. Table II shows the FSimχ scores for some of the
node pairs in Figure 1 based on the definition of fractional
χ-simulation (Definition 4) and the FSimχ framework (Equa-
tion 1). We can observe that: (1) a pair (u, v) where u is not
but very closely simulated by v has a high FSimχ score, e.g.,
FSimbj(u, v3); (2) when u is χ-simulated by v, FSimχ(u, v)
reaches a maximum value of 1, e.g., FSimb(u, v4), which
conforms with the well-definiteness of FSimχ.

According to Equation 1, the FSimχ score between two
nodes depends on the FSimχ scores of their neighbors. This
naturally leads to an iterative computation scheme. This itera-
tive process is detailed in the next section along with how to
guarantee its convergence.

C. Iterative Computation
Consider FSimk

χ(u, v), which denotes the χ-simulation
score of nodes u and v in the k-[th] iteration (k ≥ 1),
the mapping operator Mk

χ and the normalizing operator Ωkχ
applied in the given iteration.

Initialization. As all simulation variants require an equiv-
alence of node labels (Definition 1 and Definition 2), The
FSimχ score is initially set to FSim0

χ(u, v) = L(u, v) by
default unless otherwise specified. When using such initial-
ization, L(u, v) = 1 must be further constrained if, and only
if, `1(u) = `2(v), in order to guarantee that FSimχ is well-
defined (Definition 4).

Iterative Update. According to Equation 1 and Equation 2,
the simulation score in the k-[th] iteration for a node pair (u, v)
regarding χ is updated via the scores of previous iteration as:

FSimk
χ(u, v) =

w+∑
(x,y)∈Mk

χ(N+
G1

(u),N+
G2

(v))
FSimk−1

χ (x, y)

Ωkχ(N+
G1

(u), N+
G2

(v))

+
w−

∑
(x,y)∈Mk

χ(N−
G1

(u),N−
G2

(v))
FSimk−1

χ (x, y)

Ωkχ(N−G1
(u), N−G2

(v))

+ (1− w+ − w−)L(u, v)
(3)

Convergence. Below we show what conditions the mapping
and normalizing operators should satisfy to guarantee Equa-
tion 3 converges. Specifically, the computation is considered to
converge if |FSimk+1

χ (u, v)− FSimk
χ(u, v)| < ε for ∀(u, v) ∈

V1 × V2, in which ε is a small positive value. Note that the
simulation subscript χ is omitted in the following theorem as
it applies to all simulation variants.
Theorem 1. The computation in Equation 3 is guaranteed to
converge if in every iteration k, the following conditions are
satisfied for any two node sets S1 and S2 in the mapping and
normalizing operators:

(C1) |Mk+1(S1, S2)| = |Mk(S1, S2)|, and Ωk+1(S1, S2) =
Ωk(S1, S2).
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(C2) |Mk(S1, S2)| ≤ Ωk(S1, S2).
(C3) Subject to the function f ,Mk(S1, S2) returns node pairs

such that ∑
(x,y)∈Mk(S1,S2)

FSimk−1(x, y) is maximized.

Proof. Let δk(u, v) = |FSimk(u, v) − FSimk−1(u, v)| and
∆k = max(u,v) δ

k(u, v). To prove this theorem, we must show
that ∆k decreases monotonically, i.e., ∆k+1 < ∆k.

Let W k(S1, S2) =
∑

(x,y)∈Mk(S1,S2) FSim
k−1(x, y). As

the size of the mapping operator and the value of normalizing
operator between S1 and S2 do not vary with k (C1), we
simply write |M(S1, S2)| and Ω(S1, S2) by dropping the
superscript. Then, we have

W k+1(S1, S2) ≥
∑

(x,y)∈Mk(S1,S2)

FSimk(x, y) (by C3)

≥W k(S1, S2)− |M(S1, S2)|∆k (by C1)

Similarly, W k(S1, S2) ≥ W k+1(S1, S2) − |M(S1, S2)|∆k can
be derived, and we immediately have,
|W k+1(S1, S2)−W k(S1, S2)| ≤ Ω(N1, N2)∆k (by C2) (4)

Then,
δk+1(u, v) ≤ (w+ + w−)∆k (by Equation 4)

< ∆k (by w+ + w− < 1)
(5)

Thus, ∆k+1 < ∆k, and the computation converges.
Corollary 1. The computation in Equation 3 converges within
dlog(w++w−) εe iterations.

Proof. According to Equation 5, we have ∆k+1 ≤ (w+ +
w−)∆k. As ∆0 cannot exceed 1, the theorem holds.

We discuss the needs of the three conditions in Theorem 1.
Given node sets S1 and S2, C1 requires that the value of
the normalizing operator Ωχ(S1, S2) and the number of node
pairs in Mχ(S1, S2) (i.e., |Mχ(S1, S2)|) remain unchanged
throughout the iterations. C2 requires that |Mχ(S1, S2))|
should be less than Ωχ(S1, S2) to guarantee the range property
in Definition 4. C3 requires that Mχ should include the pairs
of neighbors that maximize the sum of their FSimχ scores in
previous iteration. Intuitively, C3 maximizes the contributions
of neighbors and is essential to satisfy simulation definiteness
(property 2 in Definition 4). Such a mapping operator is
accordingly called a maximum mapping operator, and will be
applied by default in the following.

D. Computation Algorithm
Algorithm 1 outlines the process for computing FSimχ. The

computation begins by initializing a hash map Hc to maintain
the initial FSimχ scores of candidate node pairs (Line 1). Note
that not all |V1|×|V2| node pairs need to be maintained, which
is explained in Section IV. Then, the scores of the node pairs
in Hc are updated iteratively until convergence (Lines 3-10).
In Line 11, the hash map is returned with the results .

Parallelization. The most time-consuming part of Algorithm 1
is running the iterative update in Lines 3 through 10. This mo-
tivated us to consider accelerating the computation with para-
llelization by using multiple threads to compute different node

pairs simultaneously. In this implementation, the simulation
scores of the previous iteration are maintained in Hp, which
means computing the node pairs in Lines 7 and 9 is indepen-
dent of each other, and can be completed in parallel without
any conflicts. We simply round-robin the node pairs in Hc

to distribute the load to all available threads, which achieves
satisfactory scalability in the experiment (Figure 9(a)).

Algorithm 1: The algorithm of computing FSimχ

Input : Graphs G1 = (V1, E1, `1), G2 = (V2, E2, `2),
weighting factors w+, w−.

Output : FSimχ Scores.
1 Hc ← Initializing(G1, G2, w+, w−);
2 Hp ← Hc;
3 while not converged do
4 foreach (u, v) ∈ Hc do
5 Hc[(u, v)]← (1− w+ − w−)L(u, v);
6 foreach (x, y) ∈Mχ(N+

G1
(u), N+

G2
(v)) do

7 Hc[(u, v)]← Hc[(u, v)] +
w+Hp[(x,y)]

Ωχ(N+
G1

(u),N+
G2

(v))
;

8 foreach (x′, y′) ∈Mχ(N−G1
(u), N−G2

(v)) do
9 Hc[(u, v)]← Hc[(u, v)] +

w−Hp[(x
′,y′)]

Ωχ(N−
G1

(u),N−
G2

(v))
;

10 Hp ← Hc;
11 return Hc.

Upper-Bound Updating. According to the range property
(Definition 4) and the computation in Equation 3, there exists
an upper-bound on the FSimχ value of each node pair, which
is computed via:

FSimχ(u, v) ≤ FSimχ(u, v)

= λ+(u, v) + λ−(u, v) + (1− w+ − w−)L(u, v),
(6)

where λs =
ws|Mχ(N s

G1
(u),N s

G2
(v))|

Ωs
χ(N s

G1
(u),N s

G2
(v)) , for s ∈ {+,−}. Accord-

ingly, if the upper bound of a certain node pair (u, v) is rela-
tively small (smaller than a given threshold β), it is expected to
make a limited contribution to the scores of others. Thus, we
can skip computing (and maintaining) FSimχ(u, v), and use
an approximated value αFSimχ(u, v) (0 < α < 1 is a given
small constant) instead when needed. The implementation of
upper-bound updating based on Algorithm 1 is as follows: (1)
in Line 1, Hc only maintains the node pairs that are guaranteed
to be larger than β; (2) in Lines 7 and 9, if (x, y) (or (x′, y′))
is not in Hp, use αFSimχ(x, y) (or αFSimχ(x′, y′)) instead.

IV. CONFIGURE FRAMEWORK TO QUANTIFY DIFFERENT
SIMULATION VARIANTS

In this section, we show how to configure the mapping and
normalizing operators in Equation 2, such that the compu-
tation of FSimχ converges, and FSimχ remains well-defined
(Definition 4) for all simulation variants.

A. Configurations of Simple Simulation

Fractional s-simulation. Given two node sets S1 and S2,
Ms and Ωs are the operators for implementing fractional s-
simulation according to Definition 4 as follows:

Ms(S1, S2) = {(x, y)|∀x ∈ S1, y = fs(x) ∈ S2}, (7)
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where fs : S1 → S2 is a function subject to the label constraint
L(x, fs(x)) ≥ θ, and

Ωs(S1, S2) = |S1|. (8)

Remark 2. Label-constrained Mapping. Analogous to the
initialization of FSimχ (Section III-C), a label constraint is
added when mapping neighbors. θ is a constant given by the
user to control the strictness of the mapping. When θ = 0, the
nodes can be mapped arbitrarily. When θ = 1, only nodes of
the same label can be mapped. It is obvious that a larger θ
leads to faster computation. As a practical guide to setting θ,
Section V-B includes a sensitivity analysis of θ and Section V-C
provides an efficiency analysis. In the following, the label
constraint is applied in the mapping operator by default and
is thus omitted from the notations for clear presentation.

Convergence. It is obvious that |Ms(S1, S2)| ≤ |S1| =
Ωs(S1, S2), which satisfies C1 and C2 in Theorem 1. As
mentioned earlier, C3 is applied by default. Therefore, the
convergence of FSims is guaranteed.

Well-Definiteness. Theorem 2 shows that FSims is well-
defined for fractional s-simulation according to Definition 4.

Theorem 2. FSims is well-defined for fractional s-simulation.

Proof. We prove that FSims satisfies all the properties in
Definition 4. P1 is easy to verify. It is unnecessary to verify
P3 as s-simulation has no converse invariant. Below we prove
P2. For brevity, we only consider out-neighbors in the proof,
and the proof with in-neighbors is similar.

We first prove that if FSims(u, v) = 1, u  s v. Based
on Equation 1, we have `1(u) = `2(v), and we add (u, v)
into R (initialized as ∅). ∀(x, y) ∈ Ms, FSims(x, y) = 1
and `1(x) = `2(y). Then, we add these nodes pairs into R,
i.e. R = R

⋃
Ms. New node pairs can be added recursively.

The process will terminate as |R| increases and cannot exceed
|V1| × |V2|. One can verify that R is a simulation.

We next prove that, for ∀(u, v) ∈ R, FSimk
s (u, v) = 1 for

any k, where R is a simulation relation. Based on Definition 1,
we define the mapping M between N+

G1
(u) and N+

G2
(v) as

M = {(u′, v′)|∀u′ ∈ N+
G1

(u), (u′, v′) ∈ R}. The case of
k = 0 is easy to verify. Assume the theorem holds at k −
1. For a node pair (u, v) ∈ R, any (u′, v′) ∈ M defined
above satisfies FSimk−1

s (u′, v′) = 1. Clearly,M is a mapping
operator defined in Equation 7. Thus, FSimk

s (u, v) = 1.
Computation. The mapping operator Ms (Equation 7) con-
strains that ∀(x, y) ∈ Ms, L(x, y) ≥ θ. As a result, the
nodes pairs with L(·) < θ will never contribute to the
computation. Thus, only the node pairs with L(·) ≥ θ need to
be maintained(Line 1 in Algorithm 1), which helps to reduce
both the time and space complexity.

Cost Analysis. The time cost to compute FSims(u, v) is
dominated by the mapping operator. According to Equation 7,
for ∀x ∈ S1, we simply search y ∈ S2 to maximize
FSimk−1

χ (x, y), which takes O(|S1||S2|) time. Therefore, the
time complexity of computing FSims is O(k|H|(D+

G1
D+
G2

+

D−G1
D−G2

) with |H| ≤ |V1| × |V2| and k as the number of
iterations. The space cost is O(|H|), as the map of FSims

scores for the previous iteration needs to be stored.

B. Configurations for All Simulation Variants

Table III summarizes the configurations of each simulation
variant. With the given configurations, FSimχ is well-defined
for ∀χ ∈ {s, dp, b, bj}. We only provide the proofs of the well-
definiteness for FSims (asymmetric, Theorem 2) and FSimbj

(symmetric, Theorem 3). The proofs for the other variants are
similar and thus are omitted due to space limitations.

Theorem 3. FSimbj is well-defined for fractional bj-simulation.

Proof. Proofs of P1 and P2 are similar to those of FSims

(Theorem 2). Proof of P3, i.e., FSimbj(u, v) = FSimbj(v, u),
is given by mathematical induction.

As the initialization function is symmetric, we have
FSim0

bj(u, v) = FSim0
bj(v, u). Suppose that FSimk−1

bj (u, v) is
symmetric, the symmetry of FSimk

bj(u, v) can be immediately
proved as Ωbj is symmetric as well. As a result, we have
FSimbj(u, v) = FSimbj(v, u).

Cost Analysis. According to Algorithm 1, the space com-
plexity is O(|H|), where |H| ≤ |V1| × |V2|. The time
complexity of computing FSimb is the same as FSims. For
computing FSimdp and FSimbj, the Hungarian algorithm needs
to be applied to implement the mapping operators due to the
presence of injection. Using a popular greedy approximate
of Hungarian [9], Mdp(S1, S2) and Mbj(S1, S2) can be
solved in a time complexity of O(|S1||S2| log(|S1||S2|)). As
a whole, the time cost of computing FSimdp and FSimbj is
O(k|H|(D+

G1
D+
G2
· logD+

G1
D+
G2

+D−G1
D−G2

· logD−G1
D−G2

)).

C. Discussions

FSimχ is closely related to several well-known concepts, in-
cluding node similarity measures (i.e., SimRank and RoleSim),
k-bisimulation (a variant of bisimulation) and graph isomor-
phism. In this subsection, we discuss their relations to FSimχ.

Relations to Similarity Measures. The FSimχ framework
(Equation 3) can be configured to compute SimRank [21] and
Rolesim [22]. As both the algorithms are applied to a single
unlabeled graph, we let G1 = G2, and the graph be label-free.

To configure FSimχ for SimRank, if u = v, we set
FSim0

χ(u, v) to 1 in the initialization step, and 0 otherwise.
In the update step, we set w+ = 0, M(S1, S2) = S1 × S2,
Ω(S1, S2) = |S1||S2| and L(u, v) = 0 in Equation 3. It is
clear that with such configurations, FSimχ computes SimRank
scores for all node pairs in a manner following [21]. Note that
the convergence of FSimχ is guaranteed, as the mapping and
normalizing operators satisfy all conditions in Theorem 1.
RoleSim [22] computes structural similarity with automor-

phic confirmation (i.e. the similarity of two isomorphic nodes
is 1) on an undirected graph. Thus, we let the out-neighbors
of each node maintain its undirected neighbors, and leave
the in-neighbors empty. In the initialization step, we set
FSim0

χ(u, v) = min(d+(u),d+(v))
max(d+(u),d+(v)) for all node pairs following

[22]. In the update step, we set w− = 0 and L(u, v) = 1
for each node pair, and follow the settings of mapping and
normalizing operators of bijective simulation in Equation 3.
With such configurations, one can verify according to [22]
that FSimχ is computing axiomatic role similarity.
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TABLE III
CONFIGURATIONS OF THE FRACTIONAL χ-SIMULATION FRAMEWORK (FSimχ) TO QUANTIFY THE STUDIED SIMULATION VARIANTS.

FSimχ Ωχ(S1, S2) Mχ(S1, S2) Function Constraints (label constraint implied)

FSims |S1| {(x, y)|∀x ∈ S1, y = fs(x) ∈ S2} fs(x) : S1 → S2

FSimdp |S1| {(x, y)|∀x ∈ S′1, y = fdp(x) ∈ S2},
where S′1 ⊆ S1 with |S′1| = min(|S1|, |S2|) fdp : S′1 → S2 is an injective function

FSimb |S1|+ |S2| {(x, y)|∀x ∈ S, y = fb(x) ∈ S}, where S = S1 ∪ S2 fb(x) ∈
{
S2, if x ∈ S1,

S1, if x ∈ S2

FSimbj

√
|S1| × |S2| {(x, y)|∀x ∈ Sm, y = fbj(x) ∈ SM}, in which

if |S1| ≤ |S2|, Sm = S1 and SM = S2; otherwise, Sm = S2 and SM = S1
fbj(x) : Sm → SM is an injective function

Relation to k-bisimulation. k-bisimulation [8], [28], [29],
[44] is a type of approximate bisimulation. Given a graph
G(V,E, `) and an integer k ≥ 0, node u is simulated by node
v via k-bisimulation [28] (i.e., u and v are k-bisimilar) if, and
only if, the following conditions hold: (1) `(u) = `(v); (2)
if k > 0, for ∀u′ ∈ N+

G (u), there exists v′ ∈ N+
G (v) s.t. u′

and v′ are [k-1]-bisimilar; and (3) if k > 0, for ∀v′ ∈ N+
G (v),

there exists u′ ∈ N+
G (u) s.t. v′ and u′ are [k-1]-bisimilar.

An iterative framework is proposed by [28] to compute k-
bisimulation, in which each node u is assigned with a signature
sigk(u) based on its node label and neighbors’ signatures.
Node u is simulated by node v via k-bisimulation if and only
if sigk(u) = sigk(v) [28]. We show in Theorem 4 that our
FSimχ can be configured to compute k-bisimulation. As k-
bisimulation in [28] uses one single graph and only considers
out-neighbors, we set G1 = G2 and w− = 0 for FSimχ. Recall
that FSimk

b(u, v), computed by Equation 3, is the b-simulation
score of nodes u and v in the k-[th] iteration,
Theorem 4. Given graph G and integer k, node u is simulated
by node v via k-bisimulation if and only if FSimk

b(u, v) = 1.

Proof. The case when k = 0 is easy to verify. Assume the
theorem is true at k − 1, we show that the theorem also
holds at k. On the one hand, if u is simulated by v via
k-bisimulation, i.e., sigk(u) = sigk(v), one can verify that
M = {(u′, v′)|sigk−1(u′) = sigk−1(v′) ∧ v′ ∈ N+

G (v),∀u′ ∈
N+
G (u)}

⋃
{(v′′, u′′)|sigk−1(v′′) = sigk−1(u′′) ∧ u′′ ∈

N+
G (u),∀v′′ ∈ N+

G (v)} is a matching of FSimb. Based on
the assumption, we have FSimk

b(u, v) = 1. On the other
hand, if FSimk

b(u, v) = 1, for ∀u′ ∈ N+
G (u), there exists

v′ ∈ N+
G (v) such that FSimk−1

b (u′, v′) = 1, which means
sigk−1(u′) = sigk−1(v′). Similarly, ∀v′′ ∈ N+

G (v), there
exists u′′ ∈ N+

G (u) with sigk−1(u′′) = sigk−1(v′′). Thus, the
set of signature values in u’s neighborhood is the same as that
in v’s neighborhood. Then, we have sigk(u) = sigk(v).

Relation to isomorphism. The graph isomorphism test asks
for whether two graphs are topologically identical, and node
u of G1 is isomorphic to node v of G2 if there exists an iso-
morphism between G1 and G2 mapping u to v. Graph isomor-
phism is a challenging problem, and there is no polynomial-
time solution yet [10]. The Weisfeiler-Lehman isomorphism
test (the WL test) [38] is a widely used solution to test whether
two graphs are isomorphic. The WL test can be solved in
polynomial time, but it is necessary but not sufficient for
isomorphism, that is two graphs that are isomorphic must pass
the WL test but not vice versa. Like the WL test, bijective
simulation is also necessary but not sufficient for isomorphism.
We next show that it is as powerful as the WL test in theory.

The WL test [38] is applied to undirected labeled graphs,
and the graph model is accordingly adapted as RoleSim. We
assume both graphs are connected, as otherwise each pair
of connected components can be independently tested. Given
graphs G1 and G2, the WL test iteratively labels each node
u ∈ V1 (resp. v ∈ V2) as s(u) (resp. s(v)). The algorithm
decides that node u is isomorphic to node v if s(u) = s(v)
when the algorithm converges3 The following theorem reveals
the connection between WL test and bijective simulation.
Theorem 5. Given graphs G1 and G2, and a node pair
(u, v) ∈ V1×V2, and assume the WL test converges, we have
s(u) = s(v) if and only if FSimbj(u, v) = 1, namely u∼bjv.
Proof. Let sk(u) and sk(v) be the label of u and v at the
k-[th] iteration during WL test. We first prove that for any k,
if sk(u) = sk(v), FSimk

bj(u, v) = 1. The case of k = 0 is
easy to verify. Suppose the theorem is true at k − 1. At the
k-[th] iteration, we have sk(u) = sk−1(u) tu′∈N(u) s

k−1(u′)
and sk(v) = sk−1(v)tv′∈N(v)s

k−1(v′), where t denotes label
concatenation. If sk(u) = sk(v), there exists a bijective func-
tion λ1 : NG1

(u) → NG2
(v) s.t. sk−1(u′) = sk−1(λ1(u′)).

Based on the assumption, we have FSimk
bj(u, v) = 1.

Next, we prove if u∼bjv, s(u) = s(v). It is easy to verify the
case of k = 0. Assume that if FSimk−1

bj (u, v) = 1, sk−1(u) =

sk−1(v) holds. At the k-[th] iteration, if FSimk
bj(u, v) = 1,

there exits a bijective functionλ2 : NG1(u)→ NG2(v) s.t. for
∀u′ ∈ NG1(u), FSimk−1

bj (u′, λ2(u′)) = 1. Thus, we can derive
sk−1(u′) = sk−1(λ2(u′)) and sk(u) = sk(v).
Remark 3. Note that there is no clear relation between
bijective simulation and graph homomorphism. To be specific,
bijective simulation cannot derive homomorphism, and homo-
morphism cannot derive bijective simulation either.

V. EXPERIMENTAL EVALUATION

A. Setup

Datasets. We used eight publicly available real-world datasets.
Table IV provides their descriptive statistics, including the
number of nodes |V |, the number of edges |E|, the number of
labels |Σ|, the average degree dG, the maximum out-degree
D+
G and the maximum in-degree D−G .

Experimental Settings. Without loss of generality, we assume
that in-neighbors and out-neighbors contribute equally to the
FSimχ computation. Thus, w+ = w− in all experiments.
Algorithms were terminated when the values changed by less
than 0.01 of their previous values. Note that when we applied
FSimχ to one single graph, we actually computed the FSimχ

3The algorithm is not guaranteed to converge.
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TABLE IV
DATASET STATISTICS AND SOURCES

Datasets |E| |V | |Σ| dG D+
G D−G Source

Yeast 7,182 2,361 13 3 60 47 [4]
Cora 91,500 23,166 70 4 104 376 [4]
Wiki 119,882 4,592 120 26 294 1,551 [4]
JDK 150,985 6,434 41 23 375 32,507 [4]

NELL 154,213 75,492 269 2 1,011 1,909 [5]
GP 298,564 144,879 8 2 191 18,553 [3]

Amazon 1,788,725 554,790 82 3 5 549 [6]
ACMCit 9,671,895 1,462,947 72K 7 809 938,039 [1]

TABLE V
PEARSON’S CORRELATION COEFFICIENTS WHEN COMPARING

INITIALIZATION FUNCTIONS.
FSimχ FSims FSimdp FSimb FSimbj

LI - LE 0.990 0.982 0.979 0.969
LI -LJ 0.967 0.950 0.937 0.922
LJ - LE 0.985 0.977 0.975 0.962

scores from the graph to itself. FSimχ{θ = a} and FSimχ{ub}
denote the computation of FSimχ uses the optimizations of
label-constrained mapping (setting θ = a) and upper-bound
updating (Section III-D), respectively. The two optimizations
can be meanwhile used as FSimχ{ub, θ = a}. We use θ = 0
by default, which will be omitted for simplicity thereafter.

We implemented FSimχ in C++. All experiments were
conducted on a platform comprising two Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz (each with 20 cores) and 512GB
memory.

B. Sensitivity Analysis

Our first test was a sensitivity analysis to examine FSimχ’s
robustness to parameter tuning and data errors. Following [22],
we calculated Pearson’s correlation coefficients. The larger the
coefficient, the more correlated the evaluated subjects. Note
that the patterns were similar across datasets. Hence, only the
results for NELL are reported.

Sensitivity of Framework Parameters. We performed the
sensitivity analysis against three parameter settings: (1) the
initialization function L(·) presented in Section III-C; (2) the
threshold θ for the label-constrained mapping outlined in Re-
mark 2; and (3) the weighting factors outlined in Section III-C.

Varying L(·). In this analysis, we computed and cross-
compared the FSimχ scores using the three different initial-
ization functions: indicator function LI(·), normalized edit
distance LE(·), and Jaro-Winkler similarity LJ(·). The results
are shown in Table V. The Pearson’s coefficients for all pairs of
initialization functions are very high (> 0.92), which indicates
that FSimχ is not sensitive to initialization functions. Hence,
going forward, we used LJ(·) as the initialization function
unless specified otherwise.

Varying θ. For this analysis, we varied θ from 0 to 1 in steps
of 0.2, and calculated the Pearson’s coefficient against the
baseline case of θ = 0 (with w+ and w− set to 0.4). The results
in Figure 4(a) clearly show that the coefficients decrease as θ
increases. This is reasonable as node pairs with L(·) < θ will
not be considered by the mapping operator. Also, more node
pairs are pruned as θ grows. However, the coefficients are still
very high (> 0.8) for all variants, even when θ = 1, which
indicates that FSimχ is not sensitive to θ.
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Fig. 4. Pearson’s correlation coefficients when varying θ and w∗

0% 5% 10% 15% 20%
structural errors

0.0
0.2
0.4
0.6
0.8
1.0

Co
ef

fic
ie

nt

FSimbj
FSimbj{θ= 1}

(a) varying structural errors

0% 5% 10% 15% 20%
label errors

0.6
0.7
0.8
0.9
1.0

Co
ef

fic
ie

nt

FSimbj
FSimbj{θ= 1}

(b) varying label errors

Fig. 5. Pearson’s correlation coefficients when varying the ratio of data errors

Varying w∗. To examine the influence of the weighting param-
eters, we varied w∗ from 0.1 to 1, where w∗ = 1−w+−w−.
Recall that θ = 1 constrains mapping only the same-label
nodes (Remark 2). As w∗ is label-relevant, we computed the
coefficients of FSimχ (vs. FSimχ{θ = 1}) by varying w∗. The
results, reported in Figure 4, show that the coefficients increase
as w∗ increases and at w∗ > 0.6, the coefficient is already
almost 1. This is expected because a larger w∗ mitigates the
impact of the label-constrained mapping. At a more reasonable
setting of w∗ = 0.2, the coefficients sit at around 0.85, which
indicates that FSimχ{θ = 1} aligns with FSimχ well. Hence,
we set w∗ = 0.2 by default in subsequent tests.

Robustness against Data Errors. Figure 5 plots the robust-
ness of FSimbj against data errors, i.e., structural errors (with
edges added/removed) and label errors (with certain labels
missing), from one extreme (θ = 0) to the other (θ = 1)
as an example of how all simulation variants performed. It
is expected that the coefficients decrease as the error level
increases. Yet, the coefficients remained high even at the 20%
error level (> 0.7 for both cases). This shows that FSimχ is
robust to data errors, which conforms with one of the reasons
why we initially thought to propose fractional simulation.

Sensitivity of Upper-bound Updating. To assess the influ-
ence of upper-bound updating (Section III-D), we varied α
(the approximate ratio) from 0 to 0.5 and β (the threshold)
from 0 to 1 in steps of 0.1. Again, the results for all simulation
variants were similar, so only the results for FSimbj{ub} (vs.
FSimbj) andFSimbj{ub, θ = 1} (vs. FSimbj{θ = 1}) are shown.

Varying β. Figure 6(a) shows the coefficients while varying
β from 0 to 0.5 with α fixed to 0.2. It is clear that the
coefficients decrease as β increases. This is reasonable as more
node pairs are pruned, and the scores become less precise
as β gets larger. Note that when β ≥ 0.3, the decreasing
trend becomes smoother for FSimbj{ub, θ = 1}. Observe that
even at β = 0.5, the coefficients are still very high (> 0.9),
which indicates that the validity of upper-bound updating is
not sensitive to β. We thus set β = 0.5 going forward to utilize
as much pruning power as possible.

Varying α. Figure 6(b) shows the coefficients when varying
α from 0.0 to 1.0. We made two observations here. First, the
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Fig. 7. Running time of FSimχ, χ ∈ {s, b, dp, bj}, while varying θ

coefficients of FSimbj{ub} initially increase, then decrease as
α gets larger. A possible reason is that α = 0 and α = 1 are
at each extreme of the setting range, but the most appropriate
setting lies somewhere in between. Second, the coefficients
for FSimbj{ub, θ = 1} increase as α increases. Potentially, the
true scores of pruned node pairs are larger than 1−w+−w−,
and thus a larger α is preferred. Note that when α = 0, i.e.,
when ignoring the pruned node pairs, the coefficients for both
FSimbj{ub} and FSimbj{ub, θ = 1} were above 0.9; hence,
α = 0 became our default.

C. Efficiency

Varying θ. With NELL as a representative of all tests,
Figure 7(a) shows the running time of FSimχ while varying
θ from 0 to 1. The experimental results show that FSimχ

runs faster as θ increases, which is expected since a larger
θ contributes to less candidate pairs to compute, as shown in
Figure 7(b). We then compared the running time of different
simulation variants under certain θ value. It is not surprising
that FSimdp and FSimbj ran slower than the other two variants,
as they contain a costly maximum-matching operation (cost
analysis in Section IV). FSimb ran slower than FSims because
the mapping operator of FSimb considers both neighbors of
a node pair(Table III). At θ ≥ 0.6, the difference in running
time for all variants was already very small. Considering the
sensitivity analysis in Figure 4(a) as well as these results,
θ = 1 seems a reasonable setting that renders both good
coefficients and performance.

Varying the Datasets. Figure 8 reports the running time
of FSimbj, the most costly simulation variant, with different
optimizations on all datasets. Additionally, experiments that re-
sulted in out-of-memory errors have been omitted. From these
tests, we made the observations: (1) the upper-bound updating
alone contributed about 5× the performance gain compared
to FSimbj{ub} with FSimbj. (2) Label-constrained mapping
is the most effective optimization, making FSimbj{θ = 1}
faster than FSimbj by up to 3 orders of magnitude. Applying
both label-constrained mapping and upper-bound updating,
FSimbj{ub, θ = 1} was the only algorithm that could complete
the executions on all datasets in time, including the two largest
ones, Amazon and ACMCit.
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Fig. 8. Running time of FSimbj on all datasets with different optimizations
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Fig. 9. Parallelization and Scalability

Parallelization and Scalability. We studied the scalability of
FSimχ with parallelization on two representative datasets, i.e.,
NELL and ACMCit (with more than 1 million nodes). The
results for FSimbj{ub, θ = 1} follow.

Varying the Number of Threads. Figure 9(a) shows the run-
ning time of FSimbj{ub, θ = 1} by varying the number of
threads from 1 to 32. We observe that both curves demon-
strate reasonable decreasing trends as the number of threads
increases. The benefits from 1 to 8 threads are substantial.
After 8, the reward ratio flattens due to the cost of thread
scheduling. Specifically, when setting t = 32, parallelization
can speed up the computation by 15 to 17 times of magnitude.

Varying Density. Figure 9(b) reports the running time of
FSimbj{ub, θ = 1} (with 32 threads) while varying the
density of the datasets from ×10 to ×50 by randomly adding
edges. Unsurprisingly, the running times of both grew longer
as the graphs became denser. However, although increased
density means greater computational complexity in theory, it
also means each node has more neighbors by expectation.
Hence, the upper bound in Equation 6 may become smaller,
which, in turn, contributes to greater upper-bound pruning
power. This may offset some of the increase in computation
complexity. Note that FSimχ finished within reasonable time
on the ACMCit with 50× more edges, indicating that it is
scalable to the graphs with hundreds of millions of edges.

D. Case Studies

In this subsection, we used three case studies to exhibit the
potential of FSimχ in the applications of pattern matching,
node similarity measurement and RDF graph alignment. We
will demonstrate the following strengths of our framework.
S1. Our FSimχ framework quantifies the degree of simula-

tion, which remedies the coarse “yes-or-no” semantics of
simulation, significantly improves the effectiveness, and
expand the scope of applying simulation.

S2. When multiple simulation variants are suitable for a
certain application, the FSimχ framework provides a
flexible way to experiment with all suitable variants, so
as to determine the one that performs the best.

Before simply driving into the case studies, the first question
to answer is: which simulation variant should be used for
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Fig. 10. Real-life matches on the Amazon graph. G1 and G2 are top-1
matches of FSimχ for answering queries Q1 and Q2 respectively. Nodes in
match G are marked by their item ids, while nodes in query Q are marked
by their labels. Nodes with the same shape have the same label.

a given application? We discuss the answer intuitively. Sub-
graph pattern matching is essentially asymmetric (matching
the pattern graph to the data graph but not the other way
around), and thus FSims and FSimdp are appropriate choices.
Node similarity measurement and graph alignment require
symmetry, and hence FSimb and FSimbj are applied. The codes
of all the baselines were provided by the respective authors.
L(·) was used indicator function since the semantics of node
labels in the studied data were clear and without ambiguity.

Pattern Matching. In this case study, we first considered
strong simulation (exact simulation by nature, [30]) and dp-
simulation [40] as two baselines, and compared them with
FSims and FSimdp to illustrate how FSimχ facilitates pattern
matching. Figure 10 shows two example matches on the
Amazon graph (see Table IV for graph statistics). When
answering query Q1, strong simulation (and dp-simulation)
returns G1, pictured in Figure 10(b), which is also the top-1
result of FSims (and FSimdp). Clearly, a simulation relation
exists between Q1 and G1, and FSimχ captures G1 with the
highest score because of simulation definiteness (Definition 4).
Q2 adds two extra nodes with new labels to Q1 but, with this
modification, both strong simulation and dp-simulation fail to
return a result while FSimχ returns G2 (strength S1), which
closely matches Q2 by missing only an edge.

For a more complete study, we also compared the results
of FSimχ with some other approximate pattern matching
algorithms. The related algorithms can be summarized in
two categories: (1) the edit-distance based algorithms, e.g.,
SAPPER [49] and TSpan [51], which enumerate all matches
with mismatched edges up to a given threshold; and (2) the
similarity-based algorithms that compute matches based on
(sub)graph similarity or node similarity. To name a few, G-
Ray [43] computes the “goodness” of a match based on
node proximity. IsoRank [39], NeMa [25] and NAGA [14]
find matches based on node similarity. G-Finder [27] and
SAGA [42] design cost functions with multiple components to
allow node mismatches and graph structural differences. SLQ
[46] and S4 [50] find matches in RDF knowledge graphs by
considering the semantics of queries. More specifically, S4

uses the semantic graph edit distance to integrate structure
similarity and semantic similarity. Note that, in the Amazon
graph, an edge from u to v indicates that people are highly
likely to buy item v after buying item u [30], and hence there
is no complex semantics among edges. As a result, we choose
TSpan, NAGA and G-Finder, the state-of-the-art algorithms in
each category, as another three baselines.

We followed the state-of-the-art algorithm NAGA [14] for
match generation and quality evaluation. Briefly, node pairs

TABLE VI
AVERAGE F1 SCORES (%) WHILE ANSWERING QUERIES IN DIFFERENT

SCENARIOS ON THE AMAZON DATASET. TSpan-X INDICATES
MISS-MATCHING UP TO x EDGES IN TSpan.

Query
Scenario

Baselines FSimχ

NAGA G-Finder TSpan-1 TSpan-3 Strong
Simulation FSims FSimdp

Exact 30.2 100 100 100 100 100 100
Noisy-E 30.5 49.2 71.0 95.8 50.0 84.0 65.7
Noisy-L 20.6 40.7 - - 33.3 75.1 73.2

Combined 21.2 40.9 - - 29.2 76.6 66.7

with high FSimχ scores are considered to be “seeds”, and
matches are generated by expanding the regions around the
“seeds” subsequently. The evaluated queries are generated
randomly by extracting subgraphs from the data graph and
introducing structural noises (randomly insert edges, up to
33%) or label noises (randomly modify node labels, up to
33%). We then evaluated different algorithms across four
query scenarios: (1) queries with no noises (Exact); (2) queries
with structural noises only (Noisy-E); (3) queries with label
noises only (Noisy-L); and (4) queries with both kinds of
noises (Combined). Note that the queries are extracted from
the graphs, which naturally serve as the “ground truth”. Given
a query Q and a returned match φ (we use top-1 match in
this case study), the F1 score is calculated by F1 = 2·P ·R

(P+R) ,

where P = |φt|
|φ| , R = |φt|

|Q| , φt is a subset of φ that includes
the correctly discovered node matches in φ, and |X| indicates
the number of nodes in the match or graph, ∀X ∈ {φt, φ,Q}.

Table VI4 shows the F1 scores of different algorithms. The
result is an average from 100 random queries of sizes ranging
from 3 to 13. dp-simulation was not compared as it is similar to
strong simulation. As with the last results, strong simulation
performed poorly against noise. In comparison, FSimχ was
more robust and performed much better (strength S1). Addi-
tionally, FSims outperformed NAGA, G-Finder and TSpan-1
by a big margin on all query scenarios. TSpan-3 performed
well in “Exact” and “Noisy-E” with its highest F1 score
of 95.8% for “Noisy-E”. This is because TSpan-3 finds all
matches with up to 3 mismatched edges, which is not less than
the number of noisy edges in most queries. However, TSpan
favors the case with missing edges rather than nodes. Thus,
it has no results for “Noisy-L” and “Combined”. In summary,
FSimχ is qualified for approximate pattern matching (strength
S1). While both s- and dp-simulation can be configured for
the application, FSims is more robust to noises and performs
better than FSimdp (strength S2).

Node Similarity Measurement. In this case study, we com-
pared FSimχ to four state-of-the-art similarity measurement
algorithms: PCRW [26], PathSim [41], JoinSim [45] and
nSimGram [12]. Following [12], [41], we used the DBIS
dataset, which contains 60,694 authors, 72,902 papers and 464
venues. In DBIS, the venues and papers are labeled as “V”
and “P”, respectively. The authors are labeled by their names.

We first computed the top-5 most similar venues to WWW
using all algorithms. The results are shown in Table VII. Note
that WWW1, WWW2 and WWW3 all represent the WWW
venue but with different node ids in DBIS, and thus they

4The results of NAGA are provided by the authors and we acknowledge
the assistance from Dr. Sourav Dutta and Dr. Shubhangi Agarwal.
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TABLE VII
THE TOP-5 SIMILAR VENUES FOR “WWW” OF DIFFERENT ALGORITHMS

Rank PCRW PathSim JoinSim nSimGram FSimb FSimbj

1 WWW WWW WWW WWW WWW WWW
2 SIGIR CIKM WWW1 CIKM CIKM WWW1

3 ICDE SIGKDD CIKM SIGIR ICDE CIKM
4 VLDB WISE WSDM WWW1 VLDB WWW2

5 Hypertext ICDM WWW2 SIGKDD SIGIR WWW3

TABLE VIII
NDCG RESULTS OF NODE SIMILARITY ALGORITHMS

Baselines Fractional χ-simulation
PCRW PathSim JoinSim nSimGram FSimb FSimbj

0.684 0.684 0.689 0.700 0.699 0.733

are naturally similar to WWW. Although all algorithms gave
reasonable results, FSimbj was the only one to return WWW1,
WWW2 and WWW3 in the top-5 results. In addition, if we
applied exact b- and bj-simulation to the task, other than
“WWW” itself (“Yes”), all the other venues had the same
score (“No”). This shows that FSimχ can be applied to the
scenarios that require fine-grained evaluation, such as node
similarity measurement (strength S1).

Following [12], [41], we further computed the top-15 most
similar venues to 15 subject venues (same as [12]) of each
algorithm. For each subject venue, we labeled each returned
venue with a relevance score: 0 for non-relevant, 1 for some-
relevant, and 2 for very-relevant, considering both the research
area and venue ranking in [2]. For example, the relevance score
for ICDE and VLDB is 2 as both are top-tier conferences in
the area of database. We then evaluated the ranking quality of
the algorithms using nDCG (the larger the score, the better).

Table VIII shows the nDCG results. Accordingly, FSimχ

outperforms the state-of-the-art algorithms by a large margin.
This indicates that FSimχ is qualified to measure node simi-
larity on labeled graphs (strength S1). The result that FSimbj

outperforms FSimb in both the “WWW” case and the general
evaluation suggests FSimbj is a better candidate for similarity
measurement (strength S2).

RDF Graph Alignment. We investigate the potential of FSimχ

in RDF graph alignment and briefly discuss its performance
below. We followed Olap [11] (a bisimulation-based alignment
algorithm) to align three different versions of biological graphs
from different times, G1, G2 and G3 [3]. G1 has 133,195
nodes and 273,512 edges, G2 has 138,651 nodes and 285,000
edges, G3 includes 144,879 nodes and 298,564 edges, and
all of them have 8 node labels and 23 edge labels. Note
that the original URI values in these datasets do not change
over time. Hence, we can use this information to identify the
ground truth alignment. In addition to Olap, we also included
another four state-of-the-art algorithms, namely k-bisimulation
[44], GSANA [47], FINAL [48] and EWS [24]. When aligning
graphs with FSimχ, a node u ∈ V1 will be aligned to a node set
Au = argmaxv∈V2

FSimχ(u, v), while with k-bisimulation, u
will be aligned to Au = {v|v ∈ V2 ∧ u and v are bisimilar}.
The F1 score of FSimχ and k-bisimulation is calculated by
F1 =

∑
u∈V1

2·Pu·Ru
|V1|(Pu+Ru) , where Pu (resp. Ru) is 1

|Au| (resp.
1) if Au contains the ground truth, and 0 otherwise. We follow
the settings in the related papers for the other baselines.

Table IX reports the F1 scores of each algorithm. Note
that we also tested the bisimulation, which resulted in 0%
F1 scores in both cases since there is no exact bisimulation
relation between two graphs. k-bisimulation performs better

TABLE IX
THE F1 SCORES (%) OF EACH ALGORITHM WHEN ALIGNING TWO
GRAPHS. x-BISIM INDICATES SETTING k = x IN k-BISIMULATION.

Graphs Baselines FSimχ
2-bisim 4-bisim Olap GSANA FINAL EWS FSimb FSimbj

G1-G2 19.9 9.1 37.9 11.8 55.2 70.8 97.6 96.5
G1-G3 53.0 10.9 37.6 14.9 52.7 65.3 96.9 95.6

than bisimulation as it, to some extent, approximates bisimu-
lation. From Table IX, our FSimχ had the highest F1 scores
and thus outperformed all the other baselines. This shows that
we can apply FSimb and FSimbj with high potential for graph
alignment (strength S1). FSimb outperforms FSimbj and thus
is a better candidate for graph alignment (strength S2).

Efficiency Evaluation. Given the superior effectiveness of
FSimχ in the above case studies, one may also be interested
in its efficiency. Next, we show the running time of FSimχ

(with 32 threads) and the most effective baseline in each
case study. We will also report the running time of exact
simulation (or its variant) if it is applied and effective in
the case study. For pattern matching, FSimχ on average took
0.25s for each query. In comparison, exact simulation took
around 1.2s, and TSpan, the most effective baseline, spent
more than 70s. In similarity measurement, nSimGram took
0.03ms to compute a single node pair, while FSimχ finished
the computation within 6500s for 134060×134060 pairs or
roughly 0.0004ms per pair. In graph alignment, k-bisimulation
(k = 4) spent 0.4s for the computation, and EWS spent
1496s. Our FSimχ ran a bit slower than EWS and took 3120s,
which is tolerable as it is much more effective than the other
algorithms. Note that it is not straightforward and potentially
unfair to compare with all the baselines as they either focus on
per-query computation (e.g., PathSim and JoinSim) or have
been individually implemented in different languages (e.g.,
Olap in Python and FINAL in Matlab).

VI. RELATED WORK

Simulation and Its Variants. In this paper, we focused on
four simulation variants: simple simulation [32], [30], bisim-
ulation [33], degree-preserving simulation [40] and bijective
simulation. The original definition of simulation [32] only
considered out-neighbors, but Ma et al.’s redefinition in 2011
[30] takes in-neighbors into account and hence is the definition
we used. Reverting to the original definition is as easy as
setting w− = 0 in our framework. Additionally, we discussed
a variant of approximate bisimulation, namely k-bisimulation
[8], [28], [29], [44], and investigated its relation to our frame-
work (Section IV-C). There are other variants that have not yet
included in the framework, including bounded simulation [15]
and weak simulation [33]. These variants consider the k-hop
neighbors (k ≥ 1) in addition to the immediate neighbors. As
an interesting future work, we will study to incorporate them
in our framework. There are also some algorithms that aim to
compute simulation (variants) efficiently and effectively, e.g.,
a hash-based algorithm in [44], external-memory algorithms
in [19], [29], a distributed algorithm in [28] and a partition
refinement algorithm in [35]. However, all these algorithms
compute the “yes-or-no” simulation (or its variant) and cannot
provide fractional scores as proposed in this paper.

Node Similarity Measures. We have shown that FSimbj is
qualified for node similarity measurement. Thus, we review
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node similarity measures on labeled graphs. SimRank [21]
and RoleSim [22] are two representative measures, and their
relations to our FSimχ have been discussed in Section IV-C.
As these two measures are less effective in computing node
similarity on labeled graphs [12], [41], similarity measures
[12], [20], [41], [45] were proposed. PathSim [41], for
instance, uses a ratio of meta-paths connecting two nodes
as the measure. JoinSim [45] is similar to PathSim, but it
satisfies the triangle inequality. nSimGram [12] computes node
similarity based on q-grams instead of meta-paths to capture
more topology information. Note that these measures cannot
substitute our work as their scores are not related to simulation
and thus are not suitable to quantify the extent of simulation.

Similarity-based Applications. There are a number of works
on pattern matching and graph alignment that are based on
node similarity techniques. These works may differ in measur-
ing node similarities. Specifically, IsoRank [39] computes the
similarity between two nodes based on an weighted average
of their neighbors’ scores. NeMa [25] defines a vector that
encodes the neighborhood information for each node. The
distance between two nodes is then computed from these
vectors. NAGA [14] leverages statistical significance through
chi-square measure to compute node similarity. REGAL [18]
measures the similarity of two nodes by taking the information
of k-hop neighbors into account. FIRST [13] and FINAL
[48] use a Sylvester equation to compute similarities, which
encodes structural consistency and attribute consistency of two
networks. For similar reasons, these works are also not suitable
to quantify the degree of simulation.

VII. CONCLUSION

In this paper, we formally define fractional χ-simulation
to quantify the degree to which one node simulates another
by a χ-simulation. We then propose the FSimχ computation
framework to realize the quantification for all χ-simulations.
We conduct extensive experiments to demonstrate the effec-
tiveness and efficiency of the fractional χ-simulation frame-
work. Considering end-users are also interested in the top-k
similarity search. In the future, we plan to devise efficient
techniques to process top-k queries based on the FSimχ.
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