
HUGE: An Efficient and Scalable Subgraph Enumeration System
Zhengyi Yang

The University of New South Wales

zyang@cse.unsw.edu.au

Longbin Lai

Alibaba Group

longbin.lailb@alibaba-inc.com

Xuemin Lin

The University of New South Wales

lxue@cse.unsw.edu.au

Kongzhang Hao

The University of New South Wales

khao@cse.unsw.edu.au

Wenjie Zhang

The University of New South Wales

zhangw@cse.unsw.edu.au

Abstract
Subgraph enumeration is a fundamental problem in graph analytics,

which aims to find all instances of a given query graph on a large

data graph. In this paper, we propose a system called HUGE to

efficiently process subgraph enumeration at scale in the distributed

context. HUGE features 1) an optimiser to compute an advanced

execution plan without the constraints of existing works; 2) a hy-

brid communication layer that supports both pushing and pulling

communication; 3) a novel two-stage execution mode with a lock-

free and zero-copy cache design, 4) a BFS/DFS-adaptive scheduler

to bound memory consumption, and 5) two-layer intra- and inter-

machine load balancing. HUGE is generic such that all existing

distributed subgraph enumeration algorithms can be plugged in to

enjoy automatic speed up and bounded-memory execution.

CCS Concepts
• Information systems → DBMS engine architectures; Join
algorithms; Graph-based database models.
Keywords
subgraph enumeration; distributed graph processing; join process-

ing; cache; dynamic scheduling; load balancing

ACM Reference Format:
Zhengyi Yang, Longbin Lai, Xuemin Lin, Kongzhang Hao, andWenjie Zhang.

2021. HUGE: An Efficient and Scalable Subgraph Enumeration System. In

Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3448016.3457237

1 Introduction
Subgraph enumeration is a fundamental problem in graph analytics

that aims to find all subgraph instances of a data graph that are

isomorphic to a query graph. Subgraph enumeration is associated

with a lot of real-world applications [4, 17, 25, 26, 35, 41, 49, 52, 62,

83, 85]. Additionally, it is a key operation when querying graph

databases such as Neo4j [55], and also plays a critical role in graph

pattern mining (GPM) systems [23, 38, 50, 81].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457237

Table 1: Results of a square query over the LJ graph in a local 10-
machine cluster, including total time (𝑇), computation time (𝑇𝑅),
communication time (𝑇𝐶 = 𝑇 − 𝑇𝑅), total data transferred (𝐶), and
peak memory usage (𝑀) among all machines.
Comm. Mode Work 𝑇 (s) 𝑇𝑅 (s) 𝑇𝐶 (s) 𝐶(GB) 𝑀(GB)

Pushing
SEED 1536.6 343.2 1193.4 537.2 42.3

BiGJoin 195.9 122.1 73.8 534.5 14.3

Pulling
BENU 4091.7 3763.2 328.5 25.3 1.3

RADS 2643.8 2478.7 165.1 452.7 19.2

Hybrid HUGE 52.3 51.5 0.8 4.6 2.2

With the growth in graph size nowadays [67] and theNP-hardness

[27] of subgraph enumeration, researchers have devoted enormous

efforts into developing efficient and scalable algorithms in the dis-

tributed context [5, 45, 46, 60, 63, 66, 71, 80, 84].

Motivations. The efficiency and scalability of distributed subgraph

enumeration are jointly determined by three perspectives: compu-
tation, communication and memory management [47, 66]. However,
existing works [5, 46, 66, 84]

1
fail to demonstrate satisfactory

performance for all three perspectives. To verify, we conduct an

initial experiment by running the square query (□) over the popular
benchmark graph LJ [47]. The results2 are shown in Table 1.

SEED [46] and BiGJoin [5] are join-based algorithms that adopt

the pushing communication mode, which communicates by sending

data from the host machine to remote destinations. In general, SEED
processes subgraph enumeration via a series of binary joins, each

joining the matches of two sub-queries using the conventional

hash join. BiGJoin [5] follows the worst-case optimal (wco) join
algorithm [56], which extends the (intermediate) results one vertex

at a time by intersecting the neighbours of all its connected vertices.

Both algorithms are scheduled in a breadth-first-search (BFS) order

[63] in order to fully utilize the parallel computation, which in turn

requires materializing and transferring (via pushing) enormous

intermediate results. Such design choices can cause high tension

on both communication and memory usage, as shown in Table 1.

While noticing the enormous cost from pushing communica-

tion, BENU [84] and RADS [66] exploit a pulling design. BENU has

been developed to pull (and cache) graph data from a distributed

key-value store (e.g. Cassandra [13]). On each machine, it embar-

rassingly parallelises a sequential depth-first-search (DFS)-based

program [82] to compute the matches. Such pulling design substan-

tially reduces BENU’s communication volume, which, however,

does not shorten its communication time accordingly. The main

culprit is the large overhead of pulling (and accessing cached) data

from the external key-value store. Additionally, while the use of

1
We mainly discuss four representative works here, while the others are in Section 8.

2
The results may differ from the original reports of BENU and RADS because we use

better implementations of the join-based algorithms [47] (Section 7).

https://doi.org/10.1145/3448016.3457237
https://doi.org/10.1145/3448016.3457237

DFS strategy results in lowmemory consumption, it can suffer from

low CPU utilisation [65]. The above shortages jointly reduce the

computing efficiency of BENU. To support a more efficient pulling

design, RADS has developed its own compute engine without exter-

nal dependency. Observe that the matches of a star (a tree of depth)

rooted on a vertex can be enumerated from its neighbours [45]. In-

stead of transferring the intermediate results, the join that involves

a star can be computed locally after pulling to the host machine the

remote vertices with their neighbours. However, to facilitate such a

pulling design, RADS is coupled with a StarJoin-like [80] execution
plan that has already been shown to be sub-optimal [5, 46], which

leads to poor performance of RADS in all perspectives.

Challenges. We distil three impact factors that jointly affect the

three perspectives of distributed subgraph enumeration, namely

execution plan, communication mode, and scheduling strategy.
Execution plan. Existing works derive their “optimal” execution

plans, while none can guarantee the best performance by all means,

as evidenced by [47] and the results in Table 1. The main reason is

that these works achieve optimality in a rather specific context sub-
ject to the join algorithm and communication mode. For example,

SEED is optimal among the hash-join-based algorithms [45, 46, 80],

while BiGJoin’s optimality follows the wco-join algorithm. The op-

timal plan of RADS is computed specifically for its pulling-based

design. We argue that an optimal execution plan should lie in a

more generic context without the constraints of existing works,

which clearly makes it challenging to define and compute.

Communication mode. While pulling mode can potentially reduce

communication volume, it is non-trivial to make it eventually im-

prove overall performance. Regarding design choice, it is not an

option to blindly embrace the pulling design, as RADS has practised,
without considering its impact on the execution plan. Regarding

implementation, it is infeasible to directly utilise an external infras-

tructure that can become the bottleneck, as BENU has encountered.

Scheduling strategy. Although DFS strategy has small memory

requirement, it can suffer from low network and CPU utilisation.

To saturate CPU power (parallelism), BFS strategy is more widely

used for distributed subgraph enumeration. However, it demands

a large memory to maintain enormous intermediate results. Static
heuristics such as batching [5] and region group [66] are used to

ease memory tension by limiting the number of initially matched

(pivot) vertices/edges. Nevertheless, such static heuristics all lack in

a tight bound and can perform poorly in practice. In our experiment

(Section 7), we have observed out-of-memory errors from the static

heuristics, even while starting with one pivot vertex/edge.

Our Solution and Contributions. In this paper, we take on all

aforementioned challenges by presenting a system called HUGE,
short for pushing/pulling-Hybrid sUbGraph Enumeration system.

Specifically, we make the following contributions:

(1) Advanced execution plan.We study to break down an execution

plan of subgraph enumeration into the logical and physical aspects.

Logically, we express all existing works [5, 45, 46, 60, 66, 80, 84]

in a uniform join-based framework. As a result, these works can

be readily plugged into HUGE to enjoy automatic performance

improvement. Physically, we carefully consider the variances of

join algorithms (hash join andwco join) and communication modes

(pushing and pulling) for better distributed join processing. As

a result, we are able to search for an optimal execution plan to

minimise both communication and computation cost in a more

generic context without the constraints of existing works.

(2) Pushing/pulling-hybrid compute engine. As the generic execu-
tion plan may require both pushing and pulling communication,

we develop a hybrid compute engine that efficiently supports dual

communication mode. Communication-wise, the dual-mode com-

munication allows the runtime to use either pushing or pulling

communication based on which mode produces less cost (according

to the optimal plan). As a result, HUGE can benefit from substan-

tially reduced communication volume, as can be seen from Table 1,

whereHUGE renders the smallest communication volume of 4�6GB,

and the lowest communication time of 0�8s. Computation-wise,

while noticing that cache is the key to efficient pulling-based com-

putation, we devise a new cache structure called least-recent-batch
used (LRBU) cache. Together with a two-stage execution strategy,

we achieve lock-free and zero-copy cache access with small synchro-

nisation cost. Additionally, a two-layer intra- and inter-machine

work-stealing mechanism is employed for load balancing. Overall,

these techniques contribute to HUGE’s superior performance. As

shown in Table 1, HUGE outperforms SEED, BiGJoin, BENU and

RADS by 29.4×, 3.7×, 78.2×, 50.6×, respectively.
(3) BFS/DFS-adaptive scheduler. To manage memory usage without

sacrificing computing efficiency, we introduce a BFS/DFS-adaptive

scheduler to dynamically control the memory usage of subgraph

enumeration. It adopts BFS-style scheduling whenever possible

to fully leverage parallelism and adapts dynamically to DFS-style

scheduling if the memory usage exceeds a constant threshold. With

the scheduler, we prove thatHUGE achieves a tight memory bound

of $ (|+𝑞 |2 · �𝐺) for a subgraph enumeration task, where |+𝑞 | is
the number of query vertices and �𝐺 is the maximum degree of

the data graph. As a result, HUGE uses only slightly more memory

than BENU (purely DFS scheduling) in Table 1, while achieving the

best performance among the competitors.

(4) In-depth experiment. We conduct extensive experiments on 7

real-world graphs. Results show the effectiveness of our techniques.

To highlight, HUGE outperforms previously best pulling-based

algorithm by up to 105×, and the best join-based algorithm by up

to 14×, with much less communication and memory usage.

Paper Organization. The rest of this paper is organized as follows.
Section 2 introduces preliminaries. Section 3 presents HUGE’s op-
timiser. We present implementation details of HUGE in Section 4

and how computation is scheduled in HUGE to achieve bounded-

memory execution in Section 5. We discuss the potential applica-

tions of HUGE in Section 6. Empirical evaluations are in Section 7,

followed by related work in Section 8 and conclusion in Section 9.

2 Preliminaries
GraphNotations.We assume both the data graph and query graph

are unlabelled, undirected, and connected
3
. A graph is a tuple 6 =

(+𝑔� �𝑔), where+𝑔 is the vertex set and �𝑔 ⊆ +𝑔 ×+𝑔 is the edge set

of 6. For a vertex ‘ ∈ +𝑔 , we useN𝑔 (‘) to denote the neighbours of
‘, and 3𝑔 (‘) = |N𝑔 (‘) | to denote the degree of ‘. The average and

maximum degree of 6 is denoted as 3𝑔 and �𝑔 , respectively. Each

3
Our techniques can seamlessly support directed and labelled graph.

vertex E ∈ +𝑔 is assigned with an unique integer ID from 0 to |+𝑔 |−1
denoted as ID(E). A star, denoted as (E ;L), is a tree of depth 1 with

E as the root and L as the leaf vertices. A subgraph 6′ of 6, denoted
6′ ⊆ 6, is a graph such that+𝑔′ ⊆ +𝑔 and �𝑔′ ⊆ �𝑔 . A subgraph 6′ is
an induced subgraph of 6 if and only if ∀‘� ‘ ′ ∈ +𝑔′� 4 = (‘� ‘ ′) ∈ �𝑔
it holds that 4 ∈ �𝑔′ . We denote 6 = 61 ∪62 for merging two graphs,

where +𝑔 = +𝑔1 ∪+𝑔2 and �𝑔 = �𝑔1 ∪ �𝑔2 .
Subgraph Enumeration. Two graphs @ and 6 are isomorphic if
and only if there exists a bijective mapping 5 : +𝑞 → +𝑔 such

that ∀(E� E ′) ∈ �𝑞� (5 (E)� 5 (E ′)) ∈ �𝑔 . Given a query graph @ and

a data graph � , the task of subgraph enumeration is to enumerate

all subgraphs 6 of � such that 6 is isomorphic to @. Each isomor-

phic mapping from @ to 6 is called a match. By representing the

query vertices as {E1� E2� � � � � E𝑛}, we can simply denote a match 5

as {D𝑘1 � D𝑘2 � � � � � D𝑘𝑛 }, where 5 (E𝑖) = D𝑘𝑖 for 1 ≤ 8 ≤ =. We call a

subgraph @′ of @ a partial query, and a match of @′ a partial match.
Given a query graph @ and data graph � , we denote the result set

of subgraph enumeration as R𝐺 (@), or R(@) if it is clear.
As a common practice, we apply the method of symmetry break-

ing [28] to avoid duplicated enumeration caused by automorphism

(an isomorphism from a graph to itself).

Graph Storage. We randomly partition a data graph � in a dis-

tributed context as most existing works [5, 45–47, 63]. For each

vertex ‘ ∈ +𝐺 , we store it with its adjacency list (‘;N(‘)) in one

of the partitions. We call a vertex that resides in the local partition

as a local vertex, and a remote vertex otherwise.

Ordered Set. An ordered set is a pair (̂ = ((�$A3), where (is a set

and $A3 is the corresponding map of ordering, which maps each

element in S to an integer. For B1� B2 ∈ (̂ , we say B1 ≤ B2 if and only if
$A3 (B1) ≤ $A3 (B2). Besides, we use min((̂) and max((̂) to denote

an element in (̂ with the smallest and largest order, respectively.

Remote Procedure Call. A remote procedure call (RPC) [54] is
when a computer program calls a procedure to execute in a different

address space. We refer to the caller as client and the executor as

server. The form of request–response interaction allows RPC to be

naturally adopted for pulling communication.

3 Advanced Execution Plan
In this section, we first show that existing works can fit uniformly

into a logical join-based framework. Then we discuss two primary

physical settings for distributed join processing. We eventually

propose a dynamic-programming-based optimiser to compute the

optimal execution plan for subgraph enumeration.

3.1 A Logical Join-based Framework
It is known that subgraph enumeration can be expressed as a multi-

way join of some basic structures called join units (e.g. edges, stars)

[46]. Given a query graph @ and a data graph � , and a sequence of

join units {@1� @2� � � � @𝑘 }, such that @ = @1 ∪ @2 ∪ · · ·@𝑘 , we have

R𝐺 (𝑞) = R𝐺 (𝑞1) Z R𝐺 (𝑞2) Z · · · Z R𝐺 (𝑞𝑘) . (1)

Logically speaking, existing works all solve the above join via

multiple rounds of two-way joins, with the variances in join unit

(U) and join order (O). For simplicity, we represent a two-way join

R(@′) = R(@′
𝑙
) Z R(@′𝑟) as a 3-tuple (@′� @′𝑙 � @

′
𝑟). The join order is an

ordered sequence of two-way joins (@′� @′
𝑙
� @′𝑟) (where @′� @′𝑙 � @

′
𝑟 ⊆ @),

with its last element being (@� @𝑙 � @𝑟).

StarJoin [80] pioneers the idea of using stars as the join unit, as

well as the left-deep join order O𝑙𝑑 , in which it requires that @′𝑟 is a
join unit for each (@′� @′

𝑙
� @′𝑟) ∈ O𝑙𝑑 . SEED [46] further allows using

clique (a complete graph), in addition to stars, as the join unit, after

maintaining extra index (triangle index). Moreover, SEED replaces

the prior practice of left-deep join order with bushy join, which

removes the constraint that each @′𝑟 is a join unit, and hence covers

a more complete searching space for an optimal execution plan.

BiGJoinWe uncover the connections between BiGJoin [5] and the

join-based framework as follows
4
. BiGJoin is based on the wco join

algorithm [56]. It matches the query graph one vertex at a time in

a predefined order. Let the matching order be +𝑞 = {E1� E2� � � � � E𝑛}.
The execution plan starts from an empty set, and computes the

matches of {E1� � � � � E𝑖 } in the 8th round. Let a partial match after

the 8th round be ? = {D𝑘1 � D𝑘2 � � � � � D𝑘𝑖 } for 8 � =, BiGJoin expands

the results in the (8 + 1)th round by matching E𝑖+1 with D𝑘𝑖+1 for ? if

and only if ∀1≤ 𝑗≤𝑖 (E 𝑗 � E𝑖+1) ∈ �𝑞� (D𝑘 𝑗
� D𝑘𝑖+1) ∈ �𝐺 . The candidate

set of E𝑖+1, denoted as C(E𝑖+1) can be computed by the following

intersection

C(𝑣𝑖+1) = ∩∀1≤ 𝑗≤𝑖∧(𝑣𝑗 ,𝑣𝑖+1)∈𝐸𝑞N𝐺 (𝑢𝑘 𝑗
) . (2)

Definition 3.1. A two-way join (@′� @′
𝑙
� @′𝑟) is a complete star join

if and only if @′𝑟 is a star (E ′𝑟 ;L) (w.l.o.g. 5) and L ⊆ +𝑞′
𝑙
.

We show how BiGJoin can be expressed in the join-based frame-

work. Let @′
𝑖
= @1 ∪ · · · ∪@𝑖 . The procedure of BiGJoin is equivalent

to the joins following the left-deep order O𝑙𝑑 , where the 8th ele-

ment of O𝑙𝑑 is (@′
𝑖+1� @

′
𝑖
� @𝑖+1), and it further satisfies that @′

𝑖
is an

induced subgraph of @, and (@′
𝑖+1� @

′
𝑖
� @𝑖+1) is a complete star join

with @𝑖+1 = (E𝑖+1;L𝑖+1).

Example 3.1. Given a BiGJoin’s execution of a 4-clique in Fig-

ure 1a, we present its corresponding execution plan in HUGE in-

Figure 1b, where each vertex extension is expressed as a complete

star join. As an example, the extension of E1 from an edge (E2� E3)
is equivalent to the complete star join of (@′

2
� @1� @2).

3.2 Physical Join Processing
Given the join-based framework, the performance of subgraph

enumeration is further determined by how the join is physically

processed. Here, we consider two physical settings for distributed

join processing, namely, join algorithm (A) and communication

mode (C). Let an arbitrary join be (@′� @′
𝑙
� @′𝑟).

Join Algorithm.While distributed join is well studied [22, 56, 68],

we focus on the algorithms adopted for subgraph enumeration. A

distributed hash join algorithm is the foundation of [45, 46, 66, 71,

80]. Given R(@′
𝑙
) and R(@′𝑟), hash join typically shuffles R(@′

𝑙
) and

R(@′𝑟) based on the join key of +𝑞′
𝑙
∩+𝑞′𝑟 . Thus, hash join needs to

fully materialize both R(@′
𝑙
) and R(@′𝑟), which can be wasteful as

only a part of R(@′
𝑙
) and R(@′𝑟) can produce feasible results. In the

case that the above join is a complete star join, the more efficient

wco join algorithm can be used by processing the intersection in

Equation 2. Instead of blindly materializing the data for join, wco

4
The discussions of BENU [84] and RADS [66] are in the full paper [86].

5
Note that as join operation is commutative, the condition also applies to𝑞′

𝑙
. Thereafter,

we always present 𝑞′𝑟 without loss of generality (w.l.o.g.) in this paper.

(a) (b) (c) (d) (e)
Figure 1: Example execution plans and data�ow graphs, where (a) the BiGJoinplan of 4-clique; (b) the execution plan by Algorithm 1 of (a); (c)
the data�ow graph of (b); (d) an execution plan by Algorithm 1 of 5-path; (e) the data�ow graph of (d).

Table 2: Existing works and their execution plans.
Logical Physical

Existing Work U O A C

StarJoin[80] star left-deep hash join pushing
SEED[46] star & clique bushy hash join pushing
BiGJoin[5] star (limited6) left-deep wco join pushing
BENU[84] star (limited) left-deep wco join pulling
RADS[66] star left-deep hash join pulling

join can bene�t from the worst-case optimal bound [56] to only
materialize necessary data.
Communication Mode. It is straightforward to process the dis-
tributed join in the pushing mode. For hash join, we shu�eR¹@0

; º
andR¹@0

Aº by pushingthe results to the remote machines indexed
by the join key. Forwco join with ?A = ¹E0

A; Lº , we push each
5 2 R¹@0

; º to the remote machine that owns5¹Eº continuously for
eachE2 L to process the intersection. In certain join scenario, we
may leverage the pulling communication mode to process the join,
in which a host machine ratherpulls the graph data thanpushes
the intermediate results. We have the following observation:

Property 3.1. The pulling communication can be adopted if@0
A is

a star¹E0
A; Lº , and the join satis�es one of the following conditions:

(C1)E0
A 2 +@; ; and (C2) the join is a complete star join.

Let5 be a match of@0
; , andD0

A = 5¹E0
Aº. Regarding C1, after pulling

N� ¹D0
Aº from the machine that ownsD0

A, the join can be locally
processed with the matches of@0

A (rooted onD0
A) enumerated as

jLj -combinations overN� ¹D0
Aº [45]; regarding C2, whilewco join

must be used, after pullingN� ¹5¹Eºº for all E2 L from a remote
machine, the intersection (Equation 2) can be locally computed.

Remark3.1. Given a join¹@0•@0
; •@0

Aº, in pushing mode, we transfer

data of sizejR¹@0
; º j ¸ j R¹@0

Aº j in the case of hash join and3� jR¹@0
; º j

in the case ofwcojoin. In pulling mode, however, we pullat mostthe
whole graph data for each machine (i.e.j� � j). Since the size of inter-
mediate results (e.g.R¹@0

; º andR¹@0
Aº) is usually order-of-magnitude

larger than the data graph itself in subgraph enumeration [6, 47, 84],
pulling can potentially bene�t from reduced communication.

3.3 Optimal Execution Plan
We summarize existing works and their execution plans in Table 2,
it is clear that they are subject to speci�c settings of join algorithm
and communication mode. To pursue an optimal execution plan
6It only accepts limited form of stars as discussed before.

Algorithm 1: OptimalExecutionPlan(@).

1 " ?;0= fg • " 2>BC fg ;
2 for = 3” ” ”j+@j do
3 forall connected subgraph@0 � @ B”C”j+@0j = = do
4 if @0 is a join unit then " 2>BC»@0¼ j R¹@0º j ;
5 else forall connected subgraphs

@0
; •@0

A � @0B”C” @0; [@0
A = @0^ � @0

;
\ � @0

A
= ; do

6 � " 2>BC»@0
; ¼ "̧ 2>BC»@0

A¼ ¸ jR¹@0º j ;
7 if ¹@0•@0

; •@0
Aº applies pulling by Equation 3then

8 � � ¸ : j� � j ;

9 else� � ¸ j R¹@0
; º j ¸ j R¹@0

Aº j ;
10 if " 2>BC»@0¼= ; or " 2>BC»@0¼¡ � then
11 " 2>BC»@0¼ � ; " ?;0= »@0¼ ¹ @0

; •@0
Aº ;

12 $ RecoverJoinOrder¹" ?;0= º ;
13 (ConfigureJoin ¹$ º ;
14 return ¹O• (º

in a more generic context, we break down an execution plan%
for subgraph enumeration into the logical settings of join unit (U)
and join order (O), as well as physical settings of join algorithm
(A) and communication mode (C). Specially, we call! = ¹U •Oº
as the logical plan. We detail the settings ofHUGEas follows. By
default, we use stars as the join unit, as our system does not assume
any index data. We use the bushy join order [37] as it covers more
complete searching space. Given an arbitrary join of¹@0•@0

; •@0
Aº, we

con�gure its physical settings according to Section 3.2 as:

¹A • Cº =

8>><

>>
:

¹wco join, pullingº• if it is a complete star join•
¹hash join, pullingº• if @0

A is a star¹E0
A; Lº ^ E0

A 2 +@; •
¹hash join, pushingº• otherwise.

(3)
We are now ready to present Algorithm 1 to compute the op-

timal execution plan forHUGEwith the aim of minimizing both
computation and communication cost.

The optimiser starts by initializing two empty maps" ?;0= and
" 2>BC. Given a sub-query@0, " ?;0= stores the mapping from@0to be
best-so-far join that produces@0, and" 2>BCrecords the correspond-
ing cost (line 1). Note that we are only interested in the non-trivial
case where@is not a join unit. The program goes through the
searching space from smaller sub-queries to larger ones (line 2). For
a sub-query@0, no join is needed if it is a join unit and we record
its computation cost asjR¹@0º j (line 4) that can be estimated using
methods such as [46, 51, 58]. Otherwise, the optimiser enumerates
all pairs of sub-queries@0

; and@0
A that can be joined to produce@0

(line 5). The cost of processing the join is computed in line 7-9,
which consists of the cost of processing@0

; and@0
A, the computation

cost of@0 (i.e. jR¹@0º j), and the communication cost of the join.
If pulling mode is con�gured, the communication cost is at most
: j� � j (line 8), where: is the number of machines in the cluster
(Remark 3.1); otherwise, the cost is equal to the shu�ing cost of@0

;
and@0

A (i.e. jR¹@0
; º j ¸ j R¹@0

Aº j) (line 9). If@0 has not been recorded
in " 2>BC, or the recorded cost is larger than the current cost� , the
new cost and join will be updated (line 11). Finally, the optimiser
recovers the join orderO from " ?;0= and con�gures the physical
settings according to Equation 3 for each join inO (line 12).

Example 3.2.Figure 1b illustrates the optimal execution plan for
the 4-clique. In Figure 1d, we further show the optimal execution
plan of a 5-path. The two joins are processed via pulling-basedwco
join and pushing-based hash join, respectively, which demonstrates
the need of both pushing and pulling communication. Note that
such a plan re�ects the works [2,51] that mix hash join andwcojoin
in a hybrid plan space [5]. Nevertheless, these works are developed
in a sequential context where computation is the only concern,
while we target the distributed runtime that further considers the
best communication mode. In the experiment, we show that our
optimal execution plan renders better performance than [2, 51].

Remark3.2. With the separation of logical and physical settings, we
allow users to directly feed existing logical plans into the optimiser,
and the optimiser will only con�gure the physical settings for each
join. Even with the same logical plan, we shall see from the experi-
ment (Section 7) thatHUGEachieves much better performance due
to the optimal settings of join algorithm and communication mode,
together with the other system optimisations to be introduced. In
this sense,existing works can be plugged intoHUGEvia their logical
plans to enjoy immediate speedup and bounded memory consumption.

4 The HUGECompute Engine
Most existing works have been developed on external big-data en-
gines such as Hadoop [29] and Timely data�ow engine [53], or
distributed key-value store such as HBase [33] and Cassandra [13].
Big-data engines typically do not support pulling communication.
Distributed key-value store, however, lacks support of pushing com-
munication, and can become the bottleneck due to large overhead.
Thus, they cannot be adopted to run the execution plan in Section 3
that may require both pushing and pulling communication.

We implement our own pushing/pulling-hybrid compute engine
for HUGE. In this section, we introduce the architecture of the
engine, the data�ow computation model, and the distributed join
processing, especially the novel pulling-based extend operator.

4.1 Architecture
HUGEadopts a shared-nothing architecture in a: -machine cluster.
There launches aHUGEruntime in each machine as shown in
Figure 2. We brie�y discuss the following components, while leaving
CacheandSchedulerto Section 4.4 and Section 5, respectively.
RPC Server: RPC server is used to answer incoming requests
from other machines. The server supports two RPCs -GetNbrs
andStealWork. GetNbrstakes a list of vertices as its arguments
and returns their neighbours. Note that the requested vertices must
reside in the current partition.StealWork can steal unprocessed
tasks locally and send them to a remote machine for load balancing.

Figure 2: HUGEArchitecture

RPC Client: An RPC client establishes connections with other
machines to handle RPC communication. RPC requests will be sent
through RPC client whenever RPCs are called locally.
Router: The router pushes data to other machines. It manages
TCP streams connected to remote machines, with a queue for each
connection. The data placed in the queue will be transferred to the
corresponding machine based on its routing index (e.g. join keys).
Worker: Upon starting, theHUGEruntime initializes a worker
pool containing certain number of workers. While an operator
is scheduled to run, it will be assigned to the worker pool and
executed by all workers to perform the de-facto computation. Each
worker has access to the local partition of the graph, RPC client and
the in-memory cache. If requesting a local vertex, it will return its
neighbours from the local partition. Otherwise, it either returns the
cached value if any, or sends an RPC request through the RPC client
to obtain the neighbours, caches them, and returns the neighbours.

4.2 Data�ow Model
We adopt the popular data�ow model [1, 53] for HUGE, where
computation is abstracted as a data�ow graph. A data�ow graph is
a directed acyclic graph (DAG), in which each vertex is an operator,
and the directed edges represent data �ows. Anoperatoris the
basic computing unit to run inHUGE, consisted of a prede�ned
computing instruction, a certain number of inbound channels and
one outbound channel. The computation of an operator is driven
by receiving data from the inbound channels. Given two operators
$ 1 and$ 2 that are connected in the data�ow graph, the data pro-
duced from the outbound channel of$ 1 will be fed to one of the
inbound channels of$ 2. We call$ 1 the precursorof $ 2, and$ 2 the
successorof $ 1. Upon receiving a data�ow,HUGEdistributes it to
each machine to drive the computation.

We introduce four primitive operators necessary to understand
this paper, namelySCAN, SINK, PUSH-JOINandPULL-EXTEND. More
operators can be added toHUGEto support complex analytical
tasks [16, 55] (discussed in Section 6). A valid data�ow must start
from aSCANoperator and end with aSINKoperator.SCAN¹@0º ac-
cepts a join unit@0as its parameter, takes a local partition of the
data graph� , iterates over the partition, and outputs the matches
of @0 in the partition. SINKis used to consume the results of sub-
graph enumeration, via either counting or writing to external I/O
devices (e.g. disk). We introduce the semantics ofPUSH-JOINand
PULL-EXTENDhere, and leave the detailed implementation to Sec-
tion 4.3 and Section 4.4.
PUSH-JOIN.PUSH-JOIN¹@0

; •@0
Aº processes the pushing-based hash

join (Equation 3) of¹@0•@0
; •@0

Aº. It con�gures two inbound channels
for the partial results ofR¹@0

; º andR¹@0
Aº from the precursors. It

shu�es (via pushing) R¹@0
; º and R¹@0

Aº based on thejoin key of
+@0

;
\ +@0

A
, and then compute the results using local join algorithm.

PULL-EXTEND.PULL-EXTEND¹�GCº accepts a parameter ofextend
index�GC= f31•32• ” ” ” •39g. For each input data that is a partial
result 5 = fD1•D2• ” ” ” •D8g, the operator extends5 by one more
vertex as50 = fD1•D2• ” ” ” •D8•D8̧ 1g, where the set of possibleD8̧ 1

is computed as
Ñ 9

: =1 N� ¹5»3: ¼º. EachN� ¹5»3: ¼º, if not present
in local machine, will bepulledfrom the machine that owns5»3: ¼.
Execution Plan Translation. The HUGEengine will automat-
ically translate an execution plan given by Algorithm 1 into a
data�ow graph. We detail the translation in the full paper [86].
In brief, aSCANoperator is installed for each join unit in the execu-
tion plan, and aSINKoperator is added to consume the �nal results.
A pulling-basedwco join and pushing-based hash join (Equation 3)
are translated into aPULL-EXTENDandPUSH-JOINoperator, respec-
tively. For pulling-based hash join, we will show in Section 5.2
how it will be translated via a series ofPULL-EXTENDoperators for
bounded-memory execution.

Example 4.1.The execution plan in Figure 1b is translated into
the data�ow presented in Figure 1c, in which each pulling-based
wcojoin is directly translated to aPULL-EXTENDoperator. Similarly,
the data�ow of Figure 1d is given in Figure 1e, in which the top
pushing-based hash join is translated into aPUSH-JOINoperator.
TheSCANandSINKoperators are added accordingly for computing
the join units (stars) and consuming the �nal results.
Overview of Distributed Execution. In the distributed context,
each operator's input data is partitioned to each machine and get
processed in parallel. TheSCANoperator directly reads from the
data graph that follows the graph partitioning strategy (Section 2).
The PUSH-JOINoperator takes two inputs, which will be hash-
partitioned according to the join key. As forPULL-EXTENDand
SINKoperators, their input data are also the output data of their
precursors and are hence partitioned.

As a common practice of big data engines [53, 75, 76], each
operator inHUGEwill process a certain number of data as abatchat
a time. Thus, a batch of data serves as the minimum data processing
unit. Without causing ambiguity, when we present �an operator
processes a batch of data�, we mean that each worker in a machine
handles one share of the batch in parallel. A barrier is used to
guarantee that all workers in a machine are running the same
operator to process the same batch of data at any time. Due to load
skew, di�erent machines may run di�erent operators unless explicit
global synchronisation is enforced. We resolve such load skew via
work stealing (Section 5.3). Depending on the scheduling strategy,
the operator will consume certain (at least one) batches of input
data in each run. If needed by a remote machine, the output data
from an operator will be organised in batches and delegated to the
router; otherwise, the data will be placed in the designated bu�er
to be further processed by the successor as the input.

4.3 PUSH-JOIN Operator
ThePUSH-JOINoperator inHUGEperforms distributed hash-join
that shu�es the intermediate results according to the join key.
Similar to [21, 29, 47], we implement abu�ered distributed hash join.
It shu�es the intermediate results (viaHUGE's router) with the
common join key to the same machine, bu�ers the received data
either in memory or on the disk, and then locally compute the join.

Algorithm 2: LRBUCache

Data: A key-value map" 202�4 , an ordered set̂(5 A44, a set(B40;43
1 Ref Method Get(E83) ! neighbours
2 return " 202�4 »E83¼

3 Ref Method Contains(E83) ! Bool
4 return E832 " 202�4

5 Mut Method Insert(E83, =486�1>DAB)
6 if CacheIsFull() ^ : (̂ 5 A44.IsEmpty() then
7 D (̂ 5 A44”PopSmallest() ; " 202�4 ”Remove(u) ;

8 " 202�4 »E83¼ =486�1>DAB;

9 Mut Method Seal(E83)
10 (̂ 5 A44”Remove(vid) ; (B40;43”Add(vid) ;

11 Mut Method Release()
12 ;0A64BC $A3¹max¹(̂ 5 A44ºº ¸ 1 ;
13 while D (B40;43”Pop() do
14 (̂ 5 A44.Insert(D, $A3¹Dº = ;0A64BC) ;

The bu�er stage can prevent the memory from being over�owed
by either branch of data. We con�gure a constant bu�er threshold,
and once the in-memory bu�er is full for either branch of the join,
we conduct anexternal merge sorton the bu�ered data via the join
keys, and then spill them onto the disk. For join processing, assume
that the data is bu�ered on disk (otherwise is trivial), we can read
back the data of each join key in a streaming manner (as the data
is sorted,), process the join by conventional nested-loop and write
out to the outbound channel. This way, the memory consumption
is bounded to the bu�er size, which is constant.

4.4 PULL-EXTEND Operator
As mentioned, we implement thePULL-EXTENDoperator by pulling
communication mode. It requires caching remote vertices for future
reuse to reduce the pulling requests via network.BENUdirectly
uses a traditional cache structure (e.g. LRU or LFU [24]) shared by
all workers. We have identi�ed two vital issues that considerably
slow down cache access from such a straightforward approach.

� Memory copies: Getting a vertex from cache involves at least
locating the vertex in the cache, updating the cache position, and
�nally copying all data (mostly neighbours) of this vertex out.
Note that such memory copy is inevitable to avoid dangling point-
ers in the traditional cache structures, as the memory address of
each entry can be changed due to potential replacement.

� Lock: Since the shared cache will be concurrently written and
read by multiple workers inside a machine, lock must be imposed
on the cache to avoid inconsistency caused by data racing.

To address the above issues, we target alock-freeandzero-copy
cache design forHUGE. While there exist works that focus on
reducing the lock contention of concurrent cache such as [90],
they are not completely free from locks. For example, benchmarks
[11] show that such design can only achieve about30%reading
performance compared to completely lock-free reads. Moreover,
existing zero-copy techniques [40, 72, 74, 87] in distributed compu-
tation mainly work to dispatchimmutable bu�erdirectly to network
I/O devices, which cannot be applied to our scenario where the
cache structure will be frequently mutated. Hence, it requires an
innovative design, coupling speci�cally with the execution of the
PULL-EXTENDoperator for lock-free and zero-copy cache access.

LRBU Cache.We present our cache structure,LRBU, short forleast
recent-batch usedcache. Algorithm 2 outlines the data structure of
LRBU, which consists of three members -" 202�4, (̂ 5 A44, and(B40;43.
" 202�4 stores the IDs of remote vertices as keys and their neigh-
bours as values.̂(5 A44is an ordered set (Section 2) that keeps track
of the orders of remote vertices that can be safely removed from
the cache, where vertices with the smallest order can be replaced
when the cache is full.(B40;43represents a set of remote vertices
that cannot be replaced at this time.

There are 5 methods inLRBU.Given a vertex,Getis used to obtain
the neighbours if any andContains checks whether the vertex
presents in the cache (line 1-4). Unlike traditional cache structures,
we designGetandContains to take onlyimmutable(i.e. read-only)
references of the cache structure. AsGetandContains are the two
methods for reading the cache, such design makes cache read fully
lock-freewhen there is no concurrent writer.

Insert is used to insert a remote vertex and its neighbours into
the cache. Additionally,Seal andReleaseare two unique methods
of LRBU. Seal removes a vertex from̂(5 A44and adds it to(B40;43.
Releasepops all values in(B40;43and adds them intô(5 A44. The
released vertices will be given an order that is larger (line 12) than
all existing vertices in(̂ 5 A44. In theInsert method, replacement
will be triggered if the cache is full. If̂(5 A44is not empty, the smallest
vertex will be popped out for replacement. Thus, callingSeal can
prevent a particular vertex from being replaced when cache is full,
while callingReleasecan make the certain vertices replaceable. If
(̂ 5 A44is empty, the insertion will happen regardless of the capacity
of the cache. This may cause the cache over�owed, but within only
a limited amount as will be shown lately.
Two-stage Execution Strategy. To make full use ofLRBU, we
break down the execution ofPULL-EXTENDinto two separate stages,
namelyfetchandintersect. The algorithm of anPULL-EXTENDoper-
ator is given in Algorithm 3.

In the fetch stage, thePULL-EXTENDscans the input data and
collects a set(A4<>C4of all remote vertices that need to be fetched
in the current batch (line 2-4). It then checks for each remote vertex
if the vertex is in the cache already (line 7). If the vertex has been
cached, the extender seals this vertex in the cache, which prevents
this particular entry to be replaced while processing this batch of
data. Otherwise, it puts the vertex into a fetch set(5 4C2�. At the last
step of the fetch stage, all vertices in(5 4C2�will be fetched asyn-
chronously by sending theGetNbrsRPC in batches and inserted
into the shared cache using one single writer (line 8-9). Note that
cache write can be well overlapped with the asynchronous RPC
requests. In the intersect stage, the extender performs the multiway
intersections de�ned in Equation 2 to obtain the results and send
them to the output (line 17). Finally, the sealed vertices are released
by callingRelease(line 20), which updates cache positions to allow
them to be replaced thereafter.

In the execution, remote vertices are sealed at the beginning
(line 7) and released at the end (line 20), which represents the
vertices used in the very recent batch. As a result, even the cache
is over�owed, the amount will not be more than the maximum
number of the remote vertices in a batch. When the cache is full,
LRBUreplaces the vertices with the smallest order, which must be
the vertices from the least-recent batch (howLRBUis named).

Algorithm 3: Algorithm of PULL-EXTEND
Input: Input channelR8, LRBU Cache�
Output: Output channelR8̧ 1

1 Procedure Fetch()
2 (A4<>C4 fg ;
3 parallel forall extended vertexD 2 R8 do
4 (A4<>C4¸ = fDg ;

5 (5 4C2� fg ;
6 foreach D 2 (A4<>C4 do
7 If (�” Contains(D)) then �” Seal(u) else(5 4C2�̧ = fDg;

8 async foreach ¹D•N� ¹Dºº 2 GetNbrs((5 4C2�) do
9 � ” Insert(D,N� ¹Dº) ;

10 Procedure Intersect()
11 R8̧ 1 fg ;
12 parallel forall ?8 2 R8 do
13 =1AB_;8BC fg ;
14 foreach extended vertexD 2 ?8 do
15 If (D is remote)then =1AB_;8BÇ= f �” Get(D) g ;
16 else=1AB_;8BÇ= fN � ¹Dº g;

17 C¹E8̧ 1º \ =1AB2=1AB_;8BC=1AB;
18 foreach E 2 C¹E8̧ 1º do
19 If (E8 ?8) then R8̧ 1¸ = f?8 ¸ f Egg;

20 � .Release() ;

21 return R8̧ 1;

The two-stage execution strategy, together with theLRBUcache
structure, eventually leads to a zero-copy and lock-free cache access
in PULL-EXTENDoperator:
I Zero-copy.Each vertex that will be accessed during the inter-

section is either in the local partition or sealed in the cache (line
15-16). As no modi�cation will occur on the cache structure in the
intersect stage (until next batch), we can access the vertex data by
simply referencing the memory.
I Lock-free.Recall that theGetmethod ofLRBUis read-only and no
write operation is executed during intersection. Cache write only
happens in the stage of fetch (line 7 and 9), and at the end of extend
(line 20). As we allow only one cache writer in each machine, the
cache access (both read and write) inHUGEis completely lock-free.

Remark4.1. Our two-stage execution strategy separates fetch and
intersect stages for lock-free and zero-copy cache access, which
results in vastly improved performance. Synchronisation between
fetch stage and intersect stage is necessary, but the overhead is very
small as demonstrated in Exp-6 (Section 7). In addition, the initial
scan in the fetch procedure can e�ectively aggregate RPC requests
of pulling remote vertices, letting merged RPCs to be sent in bulk,
which results in e�ective network utilisation.

5 Scheduling
We present in this section how we address the memory issue of
subgraph enumeration by developing advanced scheduling tech-
niques forHUGE. Note that there requires global synchronisa-
tion for PUSH-JOINoperator to guarantee no missing results. To
ease the presentation, we �rst assume that the execution plan con-
tains noPUSH-JOINto focus on the two scheduling techniques -
DFS/BFS-adaptive scheduling for bounded-memory execution and
work stealing for load balancing. Then, we introduce how to plugin
the PUSH-JOINoperator.

Algorithm 4: DFS/BFS-adaptive Scheduler
Input: An execution plan%

1 $ �rst operator in %;
2 while there are uncompleted operatorsdo
3 if $ has no input̂ $ < SCANthen
4 $ %”Precursor($) ;

5 else
6 Schedule($) ;
7 Loop
8 if &$.is_full()_ $ has no inputthen
9 Yield($) ; break;

10 If ($ = SINK) then $ %”Precursor($) ;
11 else$ %”Successor($) ;

5.1 Overview
HUGE's scheduler is a daemon thread in each machine that main-
tains a shared scheduling channel with all workers. Each worker
can either send its status to the scheduler or receive scheduling
signals. Once an operator$ is scheduled (callingschedule($)),
the scheduler will broadcast aschedulesignal to all workers to
run $. The scheduler can also broadcast ayield signal to yield the
running of $ (callingYield($)). The workers, once received the
yield signal, will complete the current batch before going to sleep.

Without PUSH-JOIN, the data�ow graph is a directed line graph.
Thus, there will be at most one precursor (and successor) for each op-
erator. Naively, there are two scheduling orders, depth-�rst-search
(DFS) order and breadth-�rst-search (BFS) order. DFS scheduler will
immediately yield the current operator and schedule the successor,
as long as the current operator has completedonebatch of input
data. When obtaining the �nal results from one batch, the sched-
uler backtracks to the starting point to consume the next batch. On
the other hand, the BFS scheduler will sequentially schedule the
operators in the data�ow and not move forward to the successor
until it completes computing all input data batches.

DFS scheduler may not fully utilize parallelism and network
bandwidth[84], while BFS scheduler can su�er from memory crisis
due to the maintenance of enormous intermediate results [45,46,60,
80]. Existing works use static heuristics such as region group [66]
and batching [5, 47] to constrain the scheduler to only consume
a portion (e.g. a batch) of input data (vertice/edges) on theSCAN
operator, and will not move to the next portion until it sinks the
�nal results of this portion. Such static heuristics lack in theoretical
guarantee and can perform poorly in practice. We have observed
out-of-memory errors from the experiment even while starting
from one single vertex (e.g. onCW in Section 7).

5.2 DFS/BFS-adaptive Scheduler
We propose aDFS/BFS-adaptive schedulerfor HUGEto bound the
memory usage while keeping high network and CPU utilisation.
Speci�cally, we equip a �xed-capacity output queue&$ for each
output channel of all operators inHUGE. Algorithm 4 illustrates
the algorithm. Once an operator is scheduled, the scheduler tends
to let it consume as much input data as possible to drive high the
CPU utilisation. Meanwhile, each worker will report the number
of results in&$ to the scheduler once it completes computing one
batch of data. Whenever&$ is full, it broadcasts the �yield� signal
to all workers to yield the current operator, preventing it from con-
suming any more batches (line 9). The successor is then scheduled

Figure 3: Running Example of DFS/BFS-adaptive Scheduler
to consume the output of the current operator (line 11). If all results
in the input channel are consumed, the scheduler backtracks to
the precursor (line 4) and repeats the process until the data in all
operators has been consumed. Backtracking is always triggered on
SINKbecause it consumes all input data directly (line 10).

Example 5.1.An example is shown in Figure 3 (time slot) 8), with
each block represents one batch of data and the operator under
schedule highlighted. Each operator has its own output queue&>DC8
with �xed size equals to three batches. All queues are initially empty
() 0). TheSCAN1 operator scans the data graph at) 1, outputting 3
batches. As the output queue is full, the scheduler yields the oper-
ator and schedulesPULL-EXTEND2 at) 2. The process repeats until
) 4, where the input ofSINK4 becomes empty. Thus, the scheduler
yieldsSINK4 and triggers backtracking. It moves to the precursor
PULL-EXTEND3, and schedules this operator at) 5. Backtracking is
also triggered at) 6 where the input of current operator becomes
empty. However, when the scheduler backtracks toPULL-EXTEND3,
its input is also empty. So the scheduler further moves forward to
PULL-EXTEND2 and starts schedulingPULL-EXTEND2 at) 7.

Bounded-Memory Execution. Di�erent from the static heuris-
tics [5, 66] that lack in a tight bound, we show how the DFS/BFS-
adaptive scheduler helps bound memory consumption. Note that
SINKoperator directly writes data to the external devices and has
no need of holding data, which is hence excluded from the memory
analysis. We �rst present the following lemma for aPULL-EXTEND
operator.

Lemma 5.2.The memory bound of scheduling aPULL-EXTEND
operator is$ ¹j+@j � � � º.

Proof. All omitted proofs can be found in the full paper [86]. �

We discuss the other two cases in the following, namelySCAN
operator and the process of pulling-based hash join.
SCAN.Note that the memory may over�ow while enumerating a
star (as the join unit). Thus, instead of directly computing the star,
we rewrite aSCAN¹@0 = ¹E; Lºº operator in a data�ow, via an initial
SCAN¹@4 = ¹E• E0ºº for any E0 2 L to produce the �rst edge, which
is then chained with¹jLj � 1º PULL-EXTEND¹�GC= f 0gºoperators
to grow the other edges of the star.
Pulling-based Hash Join.Consider a join¹@0•@0

; •@0
Aº that is processed

via pulling-based hash join, where@0
A is a star¹E0

A; Lº (must be so
according to Equation 3). Similar to theSCANoperator, a pulling-
based hash join may also su�er from memory issue of computing
stars. We show how such a join can be realized via a series of
PULL-EXTENDoperators to resolve the issue.

As a preliminary notation, given a query graph@with the vertices
listed asfE1• E2• ” ” ” • E=g and+ 0

@ � +@, we denoteIdx¹@j+ 0
@º as an

ordered indices of@w.r.t. + 0
@, where8 2 Idx¹@j+ 0

@º if and only if
E8 2 + 0

@. We split L into two parts, namely+1 = L \ +@0
;

and
+2 = L n +1, and accordingly divide the execution into a chain of
PULL-EXTENDoperators. Speci�cally,
� If +1 < ; , we deploy aPULL-EXTEND¹�GC= Idx¹@0

; j+1ºº operator.
Note that this extension does not actually match new query
vertex, but rather verify the connection betweenE0

A and each
E 2 +1 in a match. Thus, we install a hint on the operator to
only preserve the result5 where5¹E0

Aº = D8̧ 1, and get rid of the
extendedD8̧ 1 in the result.

� For eachE 2 +2, we sequentially chain a newPULL-EXTEND
¹�GC= Idx¹@0

; jfEgººoperator to grow the other star edges.

With the above transformations, we further have:

Lemma 5.3.Given@Bas a star¹EB; Lº , the memory bound of sched-
uling aSCAN(@B) operator and a pulling-based hash join¹@0•@0

; •@Bº
are$ ¹jLj 2 � � � º and$ ¹jLj � j+@0j � � � º, respectively.

Summarizing from Lemma 5.2 and Lemma 5.3, we �nally have:

Theorem 5.4.HUGEschedules a subgraph enumeration task with
the memory bound of$ ¹j+@j2 � � � º.

5.3 Load Balancing
Graph computation is usually irregular due to the power-law char-
acteristics in real-world graphs [18, 19]. Current solutions [66, 84]
often distribute load based on the �rstly matched vertex, which may
still su�er from load skew. InHUGE, we adopt the work-stealing
technique [23, 91] to dynamicallybalance the load. We implement a
two-layer intra- and inter-machine work stealing to accommodate
HUGE's caching mechanism and BFS/DFS-adaptive scheduler.

For intra-machine work stealing, we maintain adeque[15] in
each worker. Once the worker executes an operator, it injects the
partial resultsR8 from the operator's input channel to its own
deque. The current worker will pop outR8 from the back of the
deque to do computation. Once a worker has completed its own
job by emptying its deque, it will randomly pick one of the workers
with non-empty deque, and steal half of the data from the front.
For PULL-EXTENDoperator, recall that its execution is separated
into fetch and intersect stages. While there is barely any skew for
fetching data, we only apply intra-machine work stealing to the
intersect stage. Speci�cally, when a worker completes its computa-
tion in line 21 of Algorithm 3, it will try to steal the other worker's
unprocessed data in line 12 to continue the process.

Inter-machine work stealing happens when any machine com-
pletes computing its own job. In this case, the scheduler of the
machine will send theStealWork RPC to a random remote ma-
chine to steal unprocessed partial results in batches from the input
channel of thetop-most un�nished operator. If receiving data, the
scheduler will schedule the corresponding operator to compute the
received data; otherwise, it picks another random machine to repeat
the attempt. Machines who have completed their own work will
send their status to the �rst machine in the cluster upon comple-
tion. The �rst machine will then broadcast the messages to all other
machines in the cluster. A list of �nished machines is maintained at
each machine, whose job will not be stolen. Once the computation
of stolen work is done and there is no more remote work to steal
(i.e. all machines have �nished their own job), the machine sends
the status to the �rst machine again to mark termination.

Note that the work stealing is applied at operator-level as de-
scribed to better balance the load. This is because the exponential
nature of subgraph enumeration that can cause the intermediate
results to explode at any operator on certain vertices (especially
large-degree vertices).

5.4 Handling Join Operator
HUGEenforces a synchronisation barrier prior to thePUSH-JOIN
operator, thus the join cannot proceed until both precursors com-
plete their computation. WithPUSH-JOINoperator, the data�ow
graph ofHUGEbecomes a directed tree.

We �rst consider a data�ow%with one PUSH-JOINoperator (e.g.
Figure 1e), which contains a left subgraph%1 and a right subgraph
%2. HUGE�rst computes %1, and then%2, whose results will be
globally synchronized at the barrier ofPUSH-JOIN. As%1 and%2
contains onlyPULL-EXTEND, they can be scheduled via the above
scheduling techniques (Sections 5.2 and 5.3).HUGEcomputes the
join after the computation of%1 and%2 are completed.

Given%1 and%2, we use%1�) %2 to denote%1 must be computed
before%2. In Figure 1e, we have%; �) %and%A�) %. Each subgraph
contains noPUSH-JOINcan be directly scheduled; otherwise, it will
be recursively divided byPUSH-JOIN. By constructing a DAG of all
subgraphs based on the�) relations, a valid execution order can be
determined via topological ordering of the DAG.

BFS/DFS-adaptive scheduling is unnecessary forPUSH-JOIN, as
the bu�ering technique (Section 4.3) can already prevent mem-
ory from over�owing. While join may produce too many data to
over�ow the successors, we allowPUSH-JOINto actively tell the
scheduler to yield its execution in case that its output queue is full.
Regarding work stealing, we only apply intra-machine stealing for
PUSH-JOIN. For the non-trivial case that the bu�ered data is on
disk, a worker can steal job by simply advancing the reading o�sets
of the other worker's bu�ered �les.

6 Applications
HUGEis designed to be �exible for extending more functionalities.
Extended systems can directly bene�t fromHUGE's pushing/pulling-
hybrid communication and bounded-memory execution. We intro-
duce three representative examples.
Cypher-based Distributed Graph Databases.Subgraph enumeration
is key to querying graph databases using language like Cypher
[57]. HUGEcan thus be extended as a Cypher-based distributed
graph database, by implementing more operations like projection,
aggregation and ordering, and connecting it with a front-end parser
(e.g. [32]) and an optimizer with cost estimation for labelled (and/or
property) data graph (e.g. [51]).
Graph Pattern Mining (GPM) Systems.A GPM system [23, 38, 50,
81] aims to �nd all subgraph patterns of interest in a large data
graph. It supports applications such as motif counting [52] and
frequent subgraph mining [36]. It essentially processes subgraph
enumeration repeatedly from small query graphs to larger ones,
each time adding one more query vertex/edge. Thus,HUGEcan be
deployed as a GPM system by adding the control �ow like loop in
order to construct a more complex data�ow for GPM tasks.
Shortest Path & Hop-constrained Path.HUGEcan also be applied to
solve more general path queries, such as the classic shortest path
problem or hop-constrained path enumeration [59]. Shortest path

Table 3: Table of Datasets
Dataset j+ j j� j 3<0G 30E6
GO 875,713 4,322,051 6,332 5.0
LJ 4,847,571 43,369,619 20,333 17.9
OR 3,072,441 117,185,083 33,313 38.1
UK 18,520,486 298,113,762 194,955 16.1
EU 173,789,185 347,997,111 20 3.9
FS 65,608,366 1,806,067,135 5,214 27.5
CW 978,409,098 42,574,107,469 75,611,696 43.5

can be computed by repeatedly applyingPULL-EXTENDfrom the
source vertex until it arrives at the target. For hop-constrained path
enumeration,HUGEcan conduct a bi-directional BFS by extending
from both ends and joining in the middle.

7 Experiments
7.1 Experimental Setup
We follow [47] to build a Rust codebase for a fair comparison. For
join-based algorithms (BiGJoinandSEED), we directly adopt the
Rust implementations in [47], which contains many optimisations
(e.g. symmetry break and compression). ForRADS, the original
authors have reviewed our implementation. ForBENU, we select
the distributed key-value database Cassandra [13] to store the data
graph as recommended by the original authors. For others, we par-
tition and store the data graph in the compressed sparse row (CSR)
format and keep them in-memory. We use the generic compression
optimisation [63] whenever it is possible in all implementations,
and decompress (by counting) to verify the results.
Hardware. We deployHUGEin: (1) a local cluster of 10 machines,
each with a 4-core Intel Xeon CPU E3-1220, 64GB memory, 1TB
disk, connected via a 10Gbps network; (2) an AWS cluster of 16
�r5.8xlarge� instances, each with 32 vCPUs, 256GB memory, 1TB
Amazon EBS storage, connected via a 10Gbps network. We run 4
workers in the local cluster and 14 workers in the AWS cluster. All
experiments are conducted in the local cluster except Exp-3.
Datasets. We use 7 real-world datasets of di�erent sizes in our
experiments as in Table 3.Google(GO), LiveJounal(LJ), Orkut
(OR), andFriendster(FS) are downloaded from [73]. UK02(UK),
EU-road(EU), andClueWeb12(CW) are obtained from [9], [14],
and [61], respectively. The datasets include social graphs (LJ, OR
andFS), road networks (EU), and web graphs (GO, UK andCW).
Queries.We use 7 queries according to prior works [5,46,47,63,66,
84] as shown in Figure 4. The partial orders for symmetry breaking
are listed below each query.
Parameters and Metrics. If not otherwise speci�ed, we use@1-@3
as the default queries, andUK as the default dataset. Note that
we may omit certain results for clarity. We con�gure the default
system parameters ofHUGEas batch size:512 (Section 4.1), cache
capacity:30%of the data graph (Section 4.4), and output queue
size:5� 107 (Section 5.2). We allow 3 hours for each query.OTand
OOMare used to indicate a query runs overtime and out of memory,
respectively. We measure the total time) , computation time) ' and
communication time) � =) �) ' according to [47]. In the bar char,
we present theratio of) �

) using grey �lling, and mark the case of
OOMwith a � on top of the bar.

7.2 Comparing Existing Solutions
Exp-1: Speed Up Existing Algorithms. We �rst verify that ex-
isting works can be readily plugged intoHUGEvia their logical

Figure 4: The Query Graphs

plans to receive automatic speedup and bounded-memory execu-
tion (Remark 3.2). We run the logical plans ofBENU, RADS, SEED,
andBiGJoinin HUGE, denoted asHUGE� BENU, HUGE� RADS,
HUGE� SEED, andHUGE� WCO, respectively. WhileSEED's plan
may include clique as the join unit, we letHUGE� SEEDcompute
the clique viaPULL-EXTENDinstead of building the costly triangle in-
dex. Note that we useLJinstead ofUKfor RADSandHUGE� RADS,
where both of them runOTon UK because of the poor execution
plan ofRADS. The results of@1 and@2 are presented in Figure 5,
with the speedup factor marked on top of each bar.

ForBENU, the huge overhead of using Cassandra makes it sig-
ni�cantly slower than HUGE� BENU. ForRADS, the speedup is
less signi�cant, mainly due to the poor execution plans ofRADS,
especially for@2, where a massive number of 3-stars must be ma-
terialized.SEEDruns OOMfor @1, while HUGE� SEEDcompletes
in 544 seconds because it processes the join via the more e�cient
pulling-basedwcojoin according to Equation 3. Note that although
SEEDreplies on the triangle index for querying@2, our index-free
HUGE� SEEDstill achieves a speedup of 2.5� . Lastly,HUGE� WCO
outperformsBiGJoinby 8.5� and 4.8� on@1 and@2, with less mem-
ory usage (e.g. 4GB vs 12GB for@1). Speci�cally,HUGE� WCO
reduces the communication time by 764� and 115� , respectively,
thanks to the e�cient PULL-EXTENDoperator.
Exp-2: All-round Comparisons. We compareHUGE(with op-
timal execution plan by Algorithm 1) on@1-@6 with the state-of-
the-art algorithms using di�erent data graphs in this experiment
(Figure 6). Among all cases,HUGEhas the highest completion rate
of 90%, whereBiGJoin, SEED, RADS, andBENUcomplete 80%, 50%,
30%, and 30%, respectively. Computation-wise,HUGEoutperforms
RADSby 54.8� , BENUby 53.3� , SEEDby 5.1� , andBiGJoinby
4.0� on average. Note that with the costly triangle index,SEEDcan
query@3 (a clique) without any join, while the index-freeHUGE
only runs slightly slower for this query. Communication-wise, the
communication time ofHUGEtakes only a very small portion (the
shaded area in a bar) in all cases, due to a combination of caching,
batching RPC requests, and good execution plan. In comparison,
we can observe that all other algorithms (especially join-based al-
gorithms) spend a notable portion of time communicating data in
most cases. Memory-wise, due to the BFS/DFS-adaptive scheduling
technique,HUGEkeeps the memory usage bounded, and the peak
memory usage is 16.6GB among all cases, compared to¡ 64GB (OOM),
2.3GB,¡ 64GB, 34.1GB forRADS, BENU, SEEDandBiGJoin, respec-
tively. This experiment shows thatHUGEcan perform scalable and
e�cient subgraph enumeration while taking into consideration of
computation, communication and memory management.
Exp-3: Web-scale Data Graph.We runHUGEover the web-scale
graphCW on the AWS cluster to test its ability in handling large

	Abstract
	1 Introduction
	2 Preliminaries
	3 Advanced Execution Plan
	3.1 A Logical Join-based Framework
	3.2 Physical Join Processing
	3.3 Optimal Execution Plan

	4 The HUGE Compute Engine
	4.1 Architecture
	4.2 Dataflow Model
	4.3 PUSH-JOIN Operator
	4.4 PULL-EXTEND Operator

	5 Scheduling
	5.1 Overview
	5.2 DFS/BFS-adaptive Scheduler
	5.3 Load Balancing
	5.4 Handling Join Operator

	6 Applications
	7 Experiments
	7.1 Experimental Setup
	7.2 Comparing Existing Solutions
	7.3 The Design of HUGE

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

