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Butterfly (a cyclic graph motif) counting is a fundamental task with many applications in graph analysis,

which aims at computing the number of butterflies in a large graph. With the rapid growth of graph data, it is

more and more challenging to do butterfly counting due to the super-linear time complexity and large memory

consumption. In this paper, we study I/O-efficient algorithms for doing butterfly counting on hierarchical

memory. Existing algorithms of the kind cannot guarantee I/O optimality. Observing that in order to count

butterflies, it suffices to “witness” a subgraph instead of the whole structure, a new class of algorithms called

semi-witnessing algorithm is proposed. We prove that a semi-witnessing algorithm is not restricted by the

lower bound Ω( |𝐸 |
2

𝑀𝐵
) of a witnessing algorithm, and give a new bound of Ω(min( |𝐸 |

2

𝑀𝐵
,
|𝐸 | |𝑉 |√
𝑀𝐵
)). We further

develop the IOBufs algorithm that manages to approach the I/O lower bound, and thus claim its optimality.

Finally, we make efforts to parallelize IOBufs to further improve the performance and scalability. We show in

the experiment that IOBufs significantly outperforms the state-of-the-art algorithms EMRC and BFC-EM. In

addition, IOBufs can scale to conducting butterfly counting on the Clueweb graph with 37 billion edges and

quintillions (10
18
) of butterflies.

CCS Concepts: • Mathematics of computing→ Graph enumeration; Graph algorithms; • Hardware
→ External storage; • Computing methodologies→ Shared memory algorithms.
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1 INTRODUCTION
Butterfly (a.k.a., rectangle) is a cyclic motif

1
that is fundamental in graph analysis. Particularly,

the butterfly is the smallest non-trivial cohesive motif [53–56] on a bipartite graph [2, 32, 45, 67],

where vertices can be divided into two disjoint sets, and edges existing only between the two

1
Following a convention, we call a small structure as a motif to avoid causing ambiguity with the data graph.
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sets of vertices. Consider a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 are the sets of vertices and edges,

respectively. The problem of butterfly counting is to compute the total number of butterflies in 𝐺 .

Butterfly counting plays an important role in many applications, such as spam detection [16, 57, 58],

recommendation systems [50], word-document clustering [13], research group identification [12],

and link prediction according to transitivity theory [9]. Recently, Lyu et al. [34] have leveraged

butterfly counting to prune infeasible vertices in a fraud-detection scenario of e-commerce.

A butterfly can be naturally decomposed into two wedges, where a wedge is an intersection of

two edges, as demonstrated in Figure 1. Thus, it is a common practice to first count wedges between

each pair of vertices as intermediate states and use the wedge count to further count butterflies.

Thus, edges and wedges (as intermediate results) are two dominant types of data to materialize in

memory for counting butterflies.
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Fig. 1. An example of butterfly counting.

With the rapid growth of graph data, the computation resources for butterfly counting (e.g.,

processing capacity and memory) can quickly drain due to its super-linear time complexity and

large memory consumption. Fortunately, the development of modern architectures brings in new

opportunities. Regarding processing capacity, modernmulti-core CPUs [19, 36, 49], GPUs [35, 39, 59],

and FPGAs [15, 33, 63] have introduced massive parallelism that expands processing capacity to

an unprecedented extent. Regarding memory configuration, people tend to leverage hierarchical

memory, i.e., faster yet smaller on-board (main) memory as the primary data container at runtime

and relatively slower yet larger secondary memory to hold data overflowed from the main memory.

A typical practice adopts RAM as the main memory, and Solid State Drive (SSD), Hard Disk Drive

as the secondary memory. A more recent work in the cloud [52] has used the local VM (virtual

machine) memory as the main memory and the cloud storage such as S3 as the secondary memory.

1.1 Existing solutions and their weakness

In-memory algorithms. ExactBFC [47] is a sequential algorithm that optimized butterfly counting

by using vertex priority to avoid duplicate calculation, which cannot fully utilize the processing

capacity of modern hardware. Note that the primary computation of butterfly counting is to count

the wedges between all pairs of vertices, and we denote the task as𝑇𝑤𝑐 {𝑉 ×𝑉 }. It is straightforward
to parallelize the subtask of 𝑇𝑤𝑐 {{𝑢} × 𝑉 } for 𝑢 ∈ 𝑉 , as proposed by BFC-VP++ [55]. Although

BFC-VP++ was designed to carefully reuse the memory, it still incurs a 𝑂 ( |𝐸 | + 𝑡 |𝑉 |) space cost
with 𝑡 working threads. Memory quickly becomes insufficient when porting such an algorithm to

the modern hardware, as it is not uncommon to configure hundreds of threads.

Hierarchical-memory algorithms. BFC-EM [55] and EMRC [68] have been proposed to leverage

disk as the secondary memory to ease the main-memory shortage. Henceforth, we use𝑀 to denote

the size of the main memory and 𝐵 to denote the size of a data block that serves as the data unit

exchanged between the main and secondary memories. Particularly, BFC-EM loads the edges

from the disk in batches to compute wedges. After completing the current batch, the wedges are
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immediately spilled to the disk to make room for the next batch. BFC-EM incurs𝑂 ( Λ
𝐵
) I/Os, where

Λ denotes the number of wedges in the graph. The I/O complexity is insensitive to the main memory

size𝑀 , making it incapable of benefiting from more memory.

Alternatively, EMRC partitions the graph into 𝑝 subgraphs to fit in the main memory, and

processes each subgraph sequentially. The authors proved that no witnessing algorithm for butterfly

counting could guarantee 𝑜 ( |𝐸 |
2

𝑀𝐵
) I/Os. Here, a witnessing algorithm [22] terms a class of algorithms

that must “see” all occurrences of the motif (here butterfly) in the main memory. They further

showed that EMRC arrives at 𝑂 ( |𝐸 |
2

𝑀𝐵
) I/Os in the worst case, thus claiming its I/O optimality.

Nevertheless, we find out that a non-negligible 𝑂 ( |𝑉 |
2

𝑝2
) space for materializing wedges has been

overlooked in EMRC, which may cause memory overflow for processing large graphs. After

consulting with the authors, we fix the issue in Section 4.3. However, this leads to larger I/Os of

EMRC as 𝑂 ( |𝐸 |
2

𝑀𝐵
+ |𝐸 | |𝑉 |√

𝑀𝐵
) and overturns its I/O optimality.

Note that existing algorithms on hierarchical memory have been developed in the sequential

CPU context, which fail to exploit the full potential of the modern multi-core processors.

1.2 Our contributions
In this paper, we study I/O-efficient and parallel butterfly counting algorithms in the hardware

context that embodies 1) a shared-memory multi-core processor, including but not limited to CPU;

2) a hierarchical-memory configuration, in which the main memory size satisfies𝑀 = 𝑜 ( |𝐸 |) and
the secondary memory is arbitrarily large.

Our first contribution is the proposal of a new class of algorithms called the semi-witnessing
algorithm, by observing that it suffices to see a subgraph of butterfly (e.g., wedge) in the main

memory for counting butterflies, as opposed to the witnessing algorithm that has to see the whole

butterfly. Based on the semi-witnessing algorithm, we derive a new I/O lower bound for butterfly

counting as Ω(min( |𝐸 | |𝑉 |√
𝑀𝐵

,
|𝐸 |2
𝑀𝐵
)). Note that when 2 |𝐸 |

|𝑉 | < 𝑐3
√
𝑀 for a constant 𝑐3, in other words, the

density (or average degree) of the graph is sufficiently small, our result degrades to Ω( |𝐸 |
2

𝑀𝐵
) as given

in [68]. One may thus argue that our result is impractical, as it seems that “most” graphs under

discussion are sparse graphs. Nevertheless, there actually exists a large spectrum of dense graphs,

including but not limited to IoT (Internet of Things) [31], software function calls [20], transitive

closure graph [25], cryptocurrency graph [64], and brain neural network [46].

Our second contribution is developing an algorithmic framework for doing butterfly counting on

the hierarchical memory, called IOBufs, short for I/O-efficient Butterfly Counting at Scale, which is

configurable to incorporate not only all our newly developed variants, but also existing algorithms

including EMRC and BFC-VP++. We show that IOBufs ultimately arrives at the worst-case optimal

I/O complexity of 𝑂 (min( |𝐸 | |𝑉 |√
𝑀𝐵

,
|𝐸 |2
𝑀𝐵
)) with the adaptive configuration according to graph density.

Particularly, IOBufs can adapt to the main-memory size𝑀 . In fact, when𝑀 is sufficiently large to

accommodate all data required by the algorithm, a variant of IOBufs becomes BFC-VP++.
Our final contribution is parallelizing IOBufs in order to leverage the processing capacity of

modern hardware. In the parallel context, given that each working thread may maintain its own

state, the algorithm can consume more memory than a sequential counterpart. As an example,

BFC-VP++ consumes 𝑂 ( |𝐸 | + 𝑡 |𝑉 |) space when there are 𝑡 working threads. In the in-memory

context, such an increment of space complexity can cause the algorithm to lower the DoP (degree

of parallelism) to avoid overflowing the memory when processing large graphs. In the hierarchical-

memory setting, it will lead to the increment of I/O cost and may compromise the I/O efficiency

of the algorithm. We have identified that the dilemma of naïve approaches (including that of
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BFC-VP++) lies in the coarse-grained parallelism, which means that an algorithm attempts to

parallelize some relatively large subtasks, such as 𝑇𝑤𝑐 {{𝑢} ×𝑉 } in BFC-VP++. In response to this,

we propose a more fine-grained approach that further divides the subtask into smaller pieces.

Noticing that too fine a granularity can increase the scheduling overhead [44], we carefully tradeoff

the I/O-efficiency and granularity of parallelism in IOBufs.

1.3 Organizations
The rest of the paper is organized as follows. Section 2 reviews the related works. Preliminary

is presented in Section 3. Existing solutions are given in Section 4, in which we revisit the I/O

complexity of EMRC. We propose the semi-witnessing algorithm and derive the I/O lower bound

of butterfly counting in Section 5. Based on the semi-witnessing algorithm, we develop multiple

variants of IOBufs in Section 6 in order to approach the I/O lower bound. Section 7 further discusses

the fine-grained technique for parallelizing IOBufs. Section 8 reports the experimental results, and

Section 9 concludes the paper.

2 RELATEDWORK
2.1 Motif counting and subgraph matching
Motifs are small subgraphs in the data graph, and thus existing subgraph matching approaches

can be utilized for motif counting. There are two mainstream subgraph matching approaches:

backtracking-based [4, 5, 17] and join-based [3, 28, 29, 60]. These approaches were mainly developed

for matching/enumerating subgraphs in general, and might not be the most suitable for butterfly

counting. Recent literature [37, 43, 62] considered counting graphlets, i.e., all motifs up to 𝑘

vertices, while butterfly counting is trivially a part of 4-vertex graphlet counting. However, the

time complexity of 4-vertex graphlet counting is dominated by 4-clique (a complete graph with 4

vertices), making it sub-optimal for butterfly counting. As triangle and butterfly are the two most

widely-studied motifs, we will next focus on reviewing the works that were explicitly developed

for counting/listing the two motifs in massive graphs.

2.2 Massive triangle counting and listing
With graph data distributed into different machines, [18] was developed by synchronizing the

intermediate states to list the triangles. The algorithm of [42] partitioned the graphs with replication

in order to avoid communication. Modern hardware is also leveraged for counting triangles. The

results of triangle counting in [23, 24, 41] have demonstrated the great potential of GPUs. With

multiple load-balancing techniques, a recent work of [41] managed to scale the task to as many

as 1024 GPU cards. Huang et al. considered triangle counting on FPGAs in [24] for better energy

efficiency. In [61], the authors accelerated the intersection operation for triangle counting using

both CPUs and GPUs. In the hierarchical-memory setting, [21, 40] proposed I/O-efficient algorithms

for triangle counting by using disk as the secondary memory.

2.3 Butterfly counting
Apart from the works introduced in Section 1, ParButterfly [49] has been developed for butterfly

counting with four variants called hashing, histogram, sorting, and batching, which mainly focus

on parallelizing the most critical operation – wedge aggregating. As pointed out by [49], the most-

optimized batching variant of ParButterfly is actually the parallel BFC-VP++ [55] algorithm, and

thus we do not further discuss it in the paper. As the graph data becomes massive, researchers have

studied to approximate the number of butterflies through sampling. The state-of-the-art (SOTA) sort

in [47] considered vertex-, edge- and wedge-sampling algorithms, as well as the edge sparsification
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technique to estimate the number of butterflies. It is interesting to compare the performance of the

SOTA approximate algorithm with that of our IOBufs. On the same dataset Journal (Table 3), the

authors reported in Figure 6(b) of [47] around 8s run time using 25%|𝐸 | sparsification (≥ 25%|𝐸 |
memory) to obtain a result with 99.9% accuracy. In comparison, IOBufs achieves better performance

(5.7s in Figure 6) using 25%|𝐸 | memory yet obtains the exact result. Note that our techniques are

orthogonal to the approximate algorithm, given that IOBufs can be adopted on the graph that

is still too large to fit in the main memory even after being sparsified. In the streaming setting,

the FLEET algorithm [48] was proposed, which combines edge sampling, edge sparsification, and

adaptive random sampling to estimate the number of butterflies in both infinite and windowed

streams. Furthermore, [65, 66] considered counting butterflies on uncertain graphs, in which each

edge has a probability of being present.

3 PRELIMINARY
Table 1. Frequently used notations.

Notation Definition

𝐺 (𝑉 , 𝐸), 𝐺 (𝑉𝐺 , 𝐸𝐺 ) graph with 𝑉 (𝑉𝐺 ) and 𝐸 (𝐸𝐺 )

𝑁 (𝑢), 𝑁𝐺 (𝑢) neighbors of 𝑢

𝑑 (𝑢), 𝑑𝐺 (𝑢) degree of 𝑢

𝑑 , 𝑑𝐺 average degree of 𝐺

(𝑢, 𝑣,𝑤) a wedge consists of 𝑢, 𝑣,𝑤

(𝑢, 𝑣,𝑤, 𝑥) a butterfly consists of 𝑢, 𝑣,𝑤, 𝑥

Φ,Φ𝐺 (Λ,Λ𝐺 ) the number of butterflies (wedges) of 𝐺

H a set for maintaining wedge count

𝑀 the size of the main memory

𝐵 the size of a block of data

𝑝, 𝑞
the partition numbers of graph data and fine-grained paral-

lelism

𝑐1, 𝑐2, 𝑐3
constant values in complexity functions determined by the

memory in bytes taken by an edge/wedge

Notations. In this paper, we consider an unlabelled, undirected simple graph
2 𝐺 (𝑉𝐺 , 𝐸𝐺 ), where

𝑉𝐺 and 𝐸𝐺 ⊆ 𝑉𝐺 ×𝑉𝐺 denote the vertex and edge set, respectively. An undirected edge between two

vertices 𝑢 and 𝑣 is denoted as (𝑢, 𝑣), or equivalently (𝑣,𝑢). We let 𝑁𝐺 (𝑢) (resp. 𝑑𝐺 (𝑢) = |𝑁𝐺 (𝑢) |)
denote the neighbors (resp. degree) of vertex 𝑢 in 𝐺 , i.e., 𝑁𝐺 (𝑢) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸𝐺 }. We also use 𝑑𝐺

to denote the average degree of the graph𝐺 , i.e., 𝑑𝐺 = 1

|𝑉𝐺 |
∑

𝑢∈𝑉𝐺 𝑑 (𝑢) = 2 |𝐸𝐺 |
|𝑉𝐺 | . A graph 𝑔(𝑉𝑔, 𝐸𝑔) is

called a subgraph of𝐺 , denoted as 𝑔 ⊆ 𝐺 , if𝑉𝑔 ⊆ 𝑉𝐺 and 𝐸𝑔 ⊆ 𝐸𝐺 . Given four vertices 𝑢, 𝑣,𝑤, 𝑥 ∈ 𝑉 ,

a butterfly (𝑢, 𝑣,𝑤, 𝑥) is a 4 cycle formed by edges (𝑢, 𝑣), (𝑣,𝑤), (𝑤, 𝑥), and (𝑥,𝑢). A wedge (𝑢, 𝑣,𝑤)
is formed by the two edges of (𝑢, 𝑣) and (𝑣,𝑤), in which 𝑣 is called the center vertex and 𝑢,𝑤 are

called the leaf vertices. Let Φ𝐺 and Λ𝐺 be the number of butterflies and wedges in 𝐺 , respectively.

Besides, we denoteH{P → N} for P ⊆ 𝑉𝐺 ×𝑉𝐺 as a set of key-value pairs for maintaining the

wedge counting, where the key is a vertex pair (𝑢,𝑤) and the corresponding valueH(𝑢,𝑤) is a
natural number. For simplicity, we will omit the subscript of 𝐺 in the above notations when 𝐺 is

clear in the context. We summarize frequently used notations in Table 1.

Butterfly counting. Butterfly counting aims to compute the number of butterflies in a given graph.

Note that each butterfly instance (𝑢, 𝑣,𝑤, 𝑥) can appear 8 times in a graph due to automorphism.

2
Note that our techniques apply seamlessly to a bipartite graph.
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We follow [55] to deduplicate by using vertex priority. In this paper, we will not dive into the

technique, and refer interested readers to [55] for further details.

Algorithm 1 In-memory butterfly counting framework

Input: graph 𝐺

Output: number of butterflies Φ
1: Initialize (0 for each entry) the hashtableH{𝑉 ×𝑉 → N}
2: for each wedge (𝑢, 𝑣,𝑤) in 𝐺 do
3: Φ← Φ + H (𝑢,𝑤)
4: H(𝑢,𝑤) ← H(𝑢,𝑤) + 1

Observe that a butterfly (𝑢, 𝑣,𝑤, 𝑥) is formed by two wedges (𝑢, 𝑣,𝑤) and (𝑢, 𝑥,𝑤). Thus, it is a
common practice to count wedges as a preliminary step in butterfly counting. Specifically, if there

exist 𝑘 wedges between vertices 𝑢 and 𝑤 , as {(𝑢, 𝑣1,𝑤), . . . , (𝑢, 𝑣𝑘 ,𝑤)}, a total number of
𝑘∗(𝑘−1)

2

butterflies can be formed by combining any pair of wedges. Obviously, it suffices to maintain

the number of wedges between all pairs of vertices (𝑢,𝑤) ∈ (𝑉 ×𝑉 ) for counting butterflies. In

the following, we often write wedges, short for the number of wedges. Consequently, a general

framework of in-memory butterfly counting is established, as presented in Algorithm 1, showing

the general procedure of the in-memory butterfly counting. For each wedge (𝑢, 𝑣,𝑤) computed over

the graph (line 2), the number of the entry (𝑢,𝑤) inH will be incremented by 1 (line 4). Note that

a small trick in line 3 updates the current butterfly count Φ by adding the current value ofH(𝑢,𝑤).
This actually leverages the sum of an arithmetic sequence, namely

𝑘∗(𝑘−1)
2

=
∑𝑘−1

𝑖=0 𝑖 . Taking the

vertex pair (𝑣1, 𝑣2) in Figure 1 as an example, we haveH(𝑣1, 𝑣2) = 2 meaning that there are two

wedges existing between 𝑣1 and 𝑣2, and one butterfly (𝑣1, 𝑣3, 𝑣2, 𝑣5) is formed accordingly.

4 BUTTERFLY COUNTING ON HIERARCHICAL MEMORY
As the graph becomes large, people have studied to solve butterfly counting on the memory with

two-level hierarchies, in which the main memory has a small capacity of𝑀 but is fast to access,

while the secondary memory has a large capacity but is relatively slower. As a common practice to

compute the I/O cost, we consider a block of size 𝐵 as the unit data exchanged between the main

and secondary memory.

𝒢!

𝒢"
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memory

(a) Graph partition (b) IOBufs-naïve

𝒢#
v1

v5

v2
v3

v4

v1
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v2
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Fig. 2. The execution of IOBufs-naïve on hierarchical memory.

4.1 Existing solutions
BFC-EM [55] was proposed to load the edges in a batching manner and conduct wedge computing

sequentially for each batch of edges. The wedges will be constantly spilled to the secondary

memory in order to avoid overflowing the main memory. BFC-EM can do butterfly counting with
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constant space complexity, while it renders an I/O cost insensitive to𝑀 . We show in the experiment

(Section 8) that BFC-EM can barely benefit frommore memory. Alternatively, the authors developed

EMRC and proved its “I/O optimality” in [68]. Following EMRC to partition the graph, we propose

the algorithmic framework of IOBufs, which provides an interface that can be further implemented

to realize different variants of the algorithm. Note that the framework also incorporates EMRC,
and one of the variants actually becomes the in-memory BFC-VP++ [55] if the main memory is

sufficiently large to accommodate the edges and wedges.

4.2 The partition-based framework

Graph partition. We first randomly partition the vertices 𝑉 into 𝑝 disjoint subsets satisfying

𝑉 =

𝑝⋃
𝑖=1

V𝑖 ,with ∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝,V𝑖 ∩V𝑗 = ∅,

and then construct each partitioned subgraph as G𝑖 (V𝑖 , E𝑖 ), where E𝑖 = {(𝑢, 𝑣) | (𝑢 ∈ V𝑖 ∨ 𝑣 ∈ V𝑖 )∧
(𝑢, 𝑣) ∈ 𝐸}. Note that alternative partition strategies may be considered, which should have little

impact on our algorithm as long as it produces a balanced number of edges across partitions, as

will be empirically studied in Section 8.6. Given that we must fit the largest partition in the main

memory, the imbalanced partition may result in a larger 𝑝 , and accordingly the increment of time

and I/O complexity of the algorithm.

The framework. Algorithm 2 demonstrates the algorithmic framework of IOBufs. Lines 1-2 first
partition the graph into 𝑝 parts, which can actually be preprocessed as will be discussed. For every

two partitioned subgraphs (lines 3-4), it launches the interface IOBufs-interface() in line 4 to count

the butterflies between two subgraphs. The interface is the key to configure different variants of

the algorithm.

Algorithm 2 The algorithmic framework of IOBufs

Input: graph 𝐺

Output: number of butterflies Φ
1: Configure the partition number 𝑝

2: Partition 𝐺 into 𝑝 parts, as {G1, . . . ,G𝑝 }
3: for 𝑖 ∈ {1, ..., 𝑝} do
4: for 𝑗 ∈ {1, ..., 𝑝} do
5: Φ← Φ + IOBufs-interface(G𝑖 ,G𝑗 )

Algorithm 3 IOBufs-naïve (a.k.a. EMRC)

1: function IOBufs-naïve(G𝑖 ,G𝑗 )

2: Load G𝑖 ,G𝑗 and initializeH{V𝑖 ×V𝑗 → N} in the main memory

3: for wedges (𝑢, 𝑣,𝑤) satisfying 𝑢 ∈ V𝑖 , 𝑣 ∈ 𝑉 ,𝑤 ∈ V𝑗 do
4: Φ← Φ + H (𝑢,𝑤)
5: H(𝑢,𝑤) ← H(𝑢,𝑤) + 1
6: return Φ

A naïve variant of IOBufs is given with the corresponding implementation of IOBufs-interface
in Algorithm 3. This algorithm is actually EMRC, but the partition number 𝑝 may be configured

differently (Section 4.3). The algorithm has the same skeleton as Algorithm 1, but places a constraint

in line 3 to guarantee each butterfly to be counted exactly once.
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Example 4.1. Figure 2(a) demonstrates partitioning the graph in Figure 1 into three parts, and

Figure 2(b) gives a running example of IOBufs-naïve. In the two partitioned subgraphs G1 and
G2, we can locate two wedges between (𝑣1, 𝑣2), and thus one butterfly is recorded. The constraint

of line 3 ensures the correctness of the algorithm. Consider the wedge (𝑣1, 𝑣2, 𝑣3). If without the
constraint, it will be counted multiple times; otherwise, it will only be counted while processing

(G1,G3).

The authors of [68] derived the I/O complexity of EMRC as 𝑂 ( |𝐸 |
2

𝑀𝐵
), and proved that EMRC

achieves the optimal I/O. However, we observe that the authors overlooked the space cost of wedges,

which leads to the increment of I/O cost of EMRC. In the following, we rectify the result after

consulting with the authors.

4.3 Revisit the I/O complexity of EMRC

According to the random partition strategy, each partition has 𝑂 ( |𝐸 |
𝑝
) edges by expectation with

high possibility [21]. Moreover, the setH now only needs to maintain the wedges of vertex pair

(𝑢,𝑤) ∈ V𝑖 ×V𝑗 each time. As bothV𝑖 andV𝑗 are a fraction of 1/𝑝 of the vertices,H consumes

𝑂 ( |𝑉 |
2

𝑝2
) space, which is unfortunately ignored in [68]. As a result, the space complexity becomes

𝑂 ( |𝐸 |
𝑝
+ |𝑉 |

2

𝑝2
) in Algorithm 3.

We next analyze the actual I/O complexity. According to [68], the I/O cost of Algorithm 3 is

dominated by line 4, which continuously loads the subgraphs from the secondary memory. By

summing all pairs of subgraphs, we obtain

𝑝∑︁
𝑖=1

𝑝∑︁
𝑗=1

|E𝑖 | + |E 𝑗 |
𝐵

= 𝑂 (𝑝 |𝐸 |
𝐵
) . (1)

Note that the required data of the algorithm must fit in the main memory. Given the space

complexity of Algorithm 3, we have

𝑀 ≥ 𝑐1
|𝐸 |
𝑝
+ 𝑐2
|𝑉 |2
𝑝2
⇒

𝑀𝑝2 − 𝑐1 |𝐸 |𝑝 − 𝑐2 |𝑉 |2 ≥ 0,

(2)

where 𝑐1 and 𝑐2 are constant values determined by the size (in bytes) of an edge and a wedge in the

main memory.

By quadratic formula, we further have

𝑝 ≥
𝑐1 |𝐸 | +

√︁
(𝑐1 |𝐸 |)2 + 4𝑐2𝑀 |𝑉 |2

2𝑀
. (3)

Let 𝑝 = ⌈ 2𝑐1 |𝐸 |+
√
4𝑐2𝑀 |𝑉 |2

2𝑀
⌉ = ⌈𝑐1 |𝐸 |

𝑀
+
√
𝑐2 |𝑉 |√
𝑀
⌉, the main memory is sufficient to maintain both edges

and wedges. Together with Equation 1, we can derive the I/O complexity of IOBufs-naïve (and
EMRC) as 𝑂 ( |𝐸 | |𝑉 |√

𝑀𝐵
+ |𝐸 |

2

𝑀𝐵
).

Accordingly, we revisit the time complexity. The algorithm must enumerate each wedge exactly

once, which costs 𝑂 (Λ); the cost of processing the edges of the graph is 𝑂 (𝑝 |𝐸 |) according to

Equation 1. Putting them together, we have the time complexity of𝑂 (Λ+ |𝐸 | |𝑉 |√
𝑀
+ |𝐸 |

2

𝑀
). Surprisingly,

given that Λ = 𝑂 ( |𝐸 |1.5) [10] and𝑀 = 𝑜 ( |𝐸 |), this is tighter than𝑂 ( |𝐸 |
2

√
𝑀
) as given in the paper [68].

Remark 4.1. From the above analysis, we summarize the requirement and configuration that should

be applied through this paper:
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• Requirement: For an algorithm to work on the hierarchical memory, the main memory

must have sufficient capacity to accommodate the data required by the algorithm.

• Configuration: In practice, we can configure the minimum possible 𝑝 such that the above

space requirement is satisfied. As in Equation 3, once the main memory size and the graph

statistics are given, 𝑝 can be configured prior to running the algorithm, and thus we can

preprocess partitioning the graph.

Particularly for EMRC, if we configure 𝑝 = ⌈𝑐1 |𝐸 |
𝑀
⌉ according to the paper [68], it is unable to

meet the above memory requirement for processing large graphs. If we configure 𝑝 as Equation 3,

the I/O cost is larger than the optimal bound (will be derived in Section 5). In other words, we

conclude that the algorithm of EMRC is not I/O-optimal.

5 I/O LOWER BOUND OF BUTTERFLY COUNTING
Zhu et al. [68] derived Ω( |𝐸 |

2

𝑀𝐵
) as the I/O lower bound of butterfly counting based on the witnessing

algorithm [22]. The witnessing algorithm requires the algorithm to see all butterflies in the main

memory, which is too strict for butterfly counting. We show that it suffices to witness a subgraph

of the butterfly (e.g., wedge), if the task is to count rather than enumerate butterflies. In response

to this, we propose a new class of algorithms called semi-witnessing algorithm, and prove that any

semi-witnessing algorithm for butterfly counting must incur Ω(min( |𝐸 |
2

𝑀𝐵
,
|𝐸 | |𝑉 |√
𝑀𝐵
)) I/Os, which is

lower than existing results.

5.1 The semi-witnessing algorithm
Note that Algorithm 1 leverages a fact that a butterfly (𝑢, 𝑣,𝑤, 𝑥) can be decomposed into two

wedges by a pair of vertices (𝑢,𝑤). To correctly count butterflies, the algorithm only needs to

record the number of wedges between the leaves 𝑢 and𝑤 without materializing the center vertices.

The center vertices in this case are nonessential for the counting. Without the center vertices (and

the associated edges), the algorithm cannot completely witness a butterfly. We hence believe that

the I/O bound [68] derived from the witnessing algorithm may leave room for improvement.

Although Algorithm 1 does not witness butterflies, it does witness all wedges as shown in line 2.

Inspired by this, we propose a new class of algorithms called semi-witnessing algorithm for counting

a given motif, by allowing the algorithm to witness only a subgraph instead of the whole motif.

Formally,

Definition 5.1. Given a graph 𝐺 , a small motif 𝑔, and a subgraph 𝑔′ ⊆ 𝑔, we denote 𝐴𝑔′ as a

semi-witnessing algorithm regarding 𝑔′ for counting the occurrences of 𝑔 in 𝐺 subject to

(1) 𝐴𝑔′ must witness all occurrences of 𝑔′ in the main memory;

(2) there exists no 𝑔′′ where 𝑔′ ⊂ 𝑔′′ such that 𝐴𝑔′ witnesses all occurrences of 𝑔
′′
.

Obviously, 𝐴𝑔 is a witnessing algorithm.

(a) A!" (c) A#$

Number of
wedges

(b) A%&

Number of
3-hop paths

Fig. 3. Three types of semi-witnessing algorithms for butterfly counting, in which the vertices/edges outlined
with dotted lines are nonessential.

As shown in Figure 3, we can develop three types of semi-witnessing algorithms for butterfly

counting, namely 𝐴𝐵𝐹 , 𝐴3𝑃 , and 𝐴𝑊𝐺 , where the subgraphs are butterfly, 3-hop path (a path
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connected by 3 consecutive paths), and wedge, respectively. Note that semi-witnessing algorithms

regarding an edge and two parallel edges, denoted respectively as 𝐴𝐸 and 𝐴𝑃𝐸 , are not listed in

Figure 3. The following lemma rules out their existence.

Lemma 5.2. There exists neither 𝐴𝑃𝐸 nor 𝐴𝐸 for butterfly counting.

Proof. Consider a butterfly (𝑢, 𝑣,𝑤, 𝑥). If there is an𝐴𝑃𝐸 algorithm, after witnessing the parallel

edges, such as (𝑢, 𝑣) and (𝑤, 𝑥) without loss of generality (w.l.g.), it is essential to also check

the existence of the edges (𝑢, 𝑥) and (𝑣,𝑤) for the butterfly. In this case, the whole butterfly has

already been witnessed. If there is an 𝐴𝐸 algorithm, after witnessing an edge, such as (𝑢, 𝑣) w.l.g.,
it is infeasible to simultaneously witness either (𝑢, 𝑥) or (𝑣,𝑤), otherwise, it is at least an 𝐴𝑊𝐺

algorithm by Definition 5.1. Moreover, co-witnessing the edge (𝑤, 𝑥) parallel to (𝑢, 𝑣) ends up with

an infeasible 𝐴𝑃𝐸 algorithm. □

Our next move is to provide the I/O lower bound for the three types of semi-witnessing algorithms.

Prior to that, we introduce some useful notations. Given E ⊆ 𝐸 and 𝑢, 𝑣 ∈ 𝑉 , we denote E𝑣 as the
edges in E that must contain 𝑣 , and E(𝑢, 𝑣) as an indicator that returns 1 when the edge (𝑢, 𝑣) ∈ E
and 0 otherwise. Moreover, the following I/O inequality obviously holds for any motif:

#I/Os ≥ # occurrences of the motif

maximum of # the motif counted per I/O

. (4)

5.2 The I/O lower bound of 𝐴𝐵𝐹

This is the case where Zhu et al. [68] derived the bound of Ω( |𝐸 |
2

𝑀𝐵
). While finding their proof

complicated to follow, we propose a more succinct version in this paper. We first have

Lemma 5.3. Given any E ∈ 𝐸, the number of butterflies ΦE that can be witnessed in E satisfies

ΦE ≤ |E|2.
Proof.

ΦE =
∑︁
𝑢∈𝑉

∑︁
𝑣∈𝑉 \{𝑢 }

∑︁
𝑤∈𝑉 \{𝑢,𝑣 }

∑︁
𝑥 ∈𝑉 \{𝑢,𝑣,𝑤 }

E(𝑢, 𝑣) × E(𝑣,𝑤) × E(𝑤, 𝑥) × E(𝑥,𝑢)

≤
∑︁
(𝑢,𝑣) ∈E

∑︁
(𝑤,𝑥) ∈E

E(𝑣,𝑤) × E(𝑥,𝑢) ≤ |E|2 .

□

Theorem 5.4. No 𝐴𝐵𝐹 algorithm for butterfly counting can guarantee 𝑜 ( |𝐸 |
2

𝑀𝐵
) I/Os.

Proof. The main memory can hold at most 𝑂 (𝑀) edges. After conducting one I/O, 𝑂 (𝐵) more

edges will be loaded into the main memory, making𝑂 (𝑀+𝐵) edges in total. According to Lemma 5.3,

there are at most𝑂 ((𝑀 +𝐵)2) butterflies witnessed by𝐴𝐵𝐹 . Note that we cannot guarantee that the

butterflies are all newly discovered while conducting each I/O. After conducting sufficient numbers

of I/Os, it is possible that some butterflies are counted more than once. Therefore, if we immediately

utilize Equation 4 based on the result of a single I/O, we will obtain an I/O lower bound that is too

loose to be practical. Inspired by [20], we can conduct 𝑠 consecutive I/Os before launching one

butterfly counting to mitigate the impact of duplicate counting. By doing so, there are at most

𝑂 ((𝑀 + 𝑠𝐵)2) butterflies witnessed by 𝐴𝐵𝐹 , i.e.,𝑂 ( (𝑀+𝑠𝐵)
2

𝑠
) per I/O by average, which is𝑂 (𝑀𝐵) by

setting 𝑠 = 𝑂 (𝑀
𝐵
). Besides, the number of butterflies in a graph can arrive at Θ( |𝐸 |2). Putting them

into Equation 4, we can derive the I/O lower bound of Ω( |𝐸 |
2

𝑀𝐵
) for any 𝐴𝐵𝐹 , which is exactly the

bound given in [68]. □
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5.3 The I/O lower bound of 𝐴𝑊𝐺

Recall that we use H as a set of key-value pairs to record the wedge count, where the keys are

the leaves of the wedge. Henceforth, we will useH ⊆ 𝑉 ×𝑉 to indicate the (number of) wedges

materialized inH . We further say a wedge (𝑢, 𝑣,𝑤) is subject toH , if (𝑢,𝑤) ∈ H . We have

Lemma 5.5. For any graph 𝐺 , given E ⊆ 𝐸 andH ⊆ 𝑉 ×𝑉 , the number of new wedges subject to
H that can be witnessed by E, denoted as ΛE [H], satisfies

ΛE [H] ≤
√︁
|H ||E |.

Proof.

ΛE [H] =
∑︁

(𝑢,𝑤) ∈H

number of new wedges witnessed by E︷                        ︸︸                        ︷∑︁
𝑣∈𝑉
E𝑣 (𝑢, 𝑣) × E𝑣 (𝑣,𝑤)

=
∑︁
𝑣∈𝑉

©«
∑︁

(𝑢,𝑤) ∈H
E𝑣 (𝑢, 𝑣) × E𝑣 (𝑣,𝑤)

ª®¬ .
Given any 𝑣 ∈ 𝑉 , on the one hand, there form at most |E𝑣 |2 new wedges; on the other hand, the

wedges subject toH are bounded by |H |. Consequently,

ΛE [H] ≤
∑︁
𝑣∈𝑉

min( |H |, |E𝑣 |2) ≤
∑︁
𝑣∈𝑉

√︁
|H | × |E𝑣 |

=
√︁
|H | ×

∑︁
𝑣∈𝑉
|E𝑣 | =

√︁
|H ||E |.

(5)

□

Note that an 𝐴𝑊𝐺 algorithm only needs to deal with wedges and edges, as the butterflies can be

immediately counted once the number of wedges between all pairs of vertices has been registered.

It is then critical for an 𝐴𝑊𝐺 to consider how to exploit the main and secondary memory to

handle wedges and edges, respectively. To ease the discussion, we start with a simple case called

wedge-only. In this case, the algorithm loads edges in a streaming manner to count wedges, and

the main memory only maintains wedges among vertex pairs. The wedges, after being used to

count butterflies, do not need to be spilled to the secondary memory. For further reference, the

IOBufs-wedge algorithm in Section 6 is one such algorithm.

Lemma 5.6. In the wedge-only case, no𝐴𝑊𝐺 algorithm for butterfly counting can guarantee𝑜 ( |𝐸 | |𝑉 |√
𝑀𝐵
)

I/Os.

Proof. The wedges are maintained in the main memory with |H | = 𝑂 (𝑀), and we load 𝑂 (𝐵)
edges per I/O to update the wedge counting. According to Lemma 5.5, at most𝑂 (

√
𝑀𝐵) new wedges

will be witnessed by conducting one I/O. Given that the total number of wedges can be Θ( |𝐸 | |𝑉 |),
a direct application of Equation 4 gives an I/O lower bound of Ω( |𝐸 | |𝑉 |√

𝑀𝐵
). □

Obviously, there are some constraints in thewedge-only case, while it paves theway for discussing

the general wedge-edge-shared case, in which the main memory can simultaneously materialize

both wedges and edges, and the wedges can be spilled to the secondary memory for further use. As

a matter of fact, “wedge-only” is a special case of wedge-edge-shared. We conclude:

Theorem 5.7. No 𝐴𝑊𝐺 algorithm for butterfly counting can guarantee 𝑜 ( |𝐸 | |𝑉 |√
𝑀𝐵
) I/Os.
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Proof. In the wedge-edge-shared case, the main memory should be divided to store wedges and

edges. Therefore, both edges andwedges take up𝑂 (𝑀) space. Considering performing an I/O to load

𝑂 (𝐵) edges, we have |E | = 𝑂 (𝑀+𝐵) and |H | = 𝑂 (𝑀). According to Lemma 5.5,𝑂 (
√
𝑀 (𝑀+𝐵)) new

wedges can be witnessed. Similarly, if we conduct an I/O to load 𝑂 (𝐵) more wedges, 𝑂 (
√
𝑀 + 𝐵𝑀)

new wedges can be witnessed. Directly applying Equation 4 by only considering one I/O leads to a

loose bound. Hence, we conduct 𝑠 = 𝑠1 + 𝑠2 consecutive I/Os as Theorem 5.4, where 𝑠1 I/Os are for

loading edges and 𝑠2 I/Os are for loading wedges. As a result, a total number of 𝑂 (𝑀 + 𝑠1𝐵) edges
and 𝑂 (𝑀 + 𝑠2𝐵) wedges are now in the main memory, which gives the newly witnessed wedges as

at most

𝑂 ((𝑀 + 𝑠1𝐵)
√︁
𝑀 + 𝑠2𝐵) = 𝑂 ((𝑀 + 𝑠𝐵)

√
𝑀 + 𝑠𝐵).

The number of wedges that are witnessed on average along the process is 𝑂 (
√
𝑀𝐵) by setting

𝑠 = 𝑂 (𝑀
𝐵
). Considering the number of wedges can be as many as Θ( |𝐸 | |𝑉 |), we derive the I/O

bound of 𝐴𝑊𝐺 as Ω( |𝐸 | |𝑉 |√
𝑀𝐵
) in the general wedge-edge-shared case. □

5.4 The I/O lower bound of 𝐴3𝑃

Theorem 5.8. No 𝐴3𝑃 algorithm for butterfly counting can guarantee 𝑜 ( |𝐸 | |𝑉 |√
𝑀𝐵
) I/Os.

Proof. 𝐴3𝑃 requires witnessing the 3-hop paths between all pairs of vertices. There are two

ways to do so:

• Directly computing all the 3-hop paths in the main memory. The case is not viable
based on Definition 5.1. Note that if all 3-hop paths have been witnessed, together with the

fact that the last edge must be checked to close a butterfly, the algorithm already witnesses

all butterflies.

• Dividing a 3-hop path into a wedge concatenating with an edge. The I/O cost of such

an algorithm is at least that of computing the wedges, and thus it cannot render I/Os in

𝑜 ( |𝐸 | |𝑉 |√
𝑀𝐵
) by Theorem 5.7.

According to the above analysis, the theorem holds. □

5.5 Final result and discussions
Theorem 5.9. No semi-witnessing algorithm for butterfly counting can guarantee𝑜 (min( |𝐸 |

2

𝑀𝐵
,
|𝐸 | |𝑉 |√
𝑀𝐵
))

I/Os.

Proof. Recall from the discussions in Lemma 5.2 and Figure 3 that any semi-witnessing algorithm

for butterfly counting must belong to either 𝐴𝐵𝐹 , 𝐴3𝑃 and 𝐴𝑊𝐺 . Thus, this theorem holds by

summarizing Theorem 5.4, Theorem 5.7, and Theorem 5.8. □

The result in Theorem 5.9 clearly guides us to design the algorithm according to the density of

the graph. Based on the size of 𝑑 and

√
𝑀 , an 𝐴𝐵𝐹 algorithm is favored if the graph is sufficiently

sparse, while an𝐴𝑊𝐺 algorithm is a better choice if the graph is dense. In Section 6, we will develop

two variants of the algorithm and make them adaptive to the graph density accordingly.

Moreover, we believe that the semi-witnessing algorithm in Definition 5.1 has paved a new way

for developing I/O-efficient algorithms for general motif counting. We focus on butterfly in this

paper as a pioneering step, and will dive into general motifs in the future.

6 THE I/O-OPTIMAL ALGORITHM
Based on Algorithm 2, we design our IOBufs that can achieve the I/O lower bound in Theorem 5.9.

We first point out the key observation to lower I/O cost for butterfly counting. We then optimize Al-

gorithm 3 based on the observation by proposing two variants of the algorithm, namely IOBufs-edge
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and IOBufs-wedge. We show that IOBufs-edge belongs to 𝐴𝐵𝐹 and IOBufs-wedge belongs to 𝐴𝑊𝐺

(Definition 5.1), and they can also approach the I/O lower bound of Theorem 5.4 and Theorem 5.7,

respectively. IOBufs can hence adaptively select IOBufs-edge and IOBufs-wedge based on whether

the graph is sparse or dense. Finally, we claim that IOBufs is I/O-optimal according to Theorem 5.9.

6.1 The key observation
As we have discussed in Section 4.3, the main reason that Algorithm 3 cannot achieve I/O optimality

is that it must maintain both edges and wedges in the main memory, which, however, is not a

necessity according to a key observation:

The number of butterflies can be correctly derived from

either edges or wedges individually.

If we have only edges in the main memory, we can clearly try all combinations of 4 vertices
and check whether they can form a butterfly. Obviously, such a naïve approach cannot work in

practice due to the large time complexity. On the other hand, if we already get the number of

wedges between each pair of vertices, the number of butterflies can be computed as we have

shown in Algorithm 1. However, if the wedges are randomly computed with edges kept in the

secondary memory, the discovery of each wedge may involve I/O cost for two edges, which will

lead to intolerable I/O cost. The above observation does inspire us to consider keeping only edges

or wedges in the main memory, but it is non-trivial to develop such an algorithm with proper

time and I/O complexity. The main idea is that we can randomly access the in-memory data, while

sequentially processing the other data in a streaming manner. This naturally leads to two variants

of the algorithm, namely IOBufs-edge and IOBufs-wedge, standing for the IOBufs algorithm with

only edges and wedges maintained in the main memory, respectively.
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Fig. 4. The execution of IOBufs-edge and IOBufs-wedge on hierarchical memory.

6.2 The IOBufs-edge variant
Algorithm 4 presents the IOBufs-edge implementation. Apart from IOBufs-naïve, IOBufs-edge
does not allocate a set to record the wedge count for all pairs ofV𝑖 ×V𝑗 in the first place. Instead, it

does so sequentially for each vertex inV𝑖 (lines 2-3). Note that, after each vertex 𝑢 is processed, the

number of wedges of {𝑢} ×V𝑗 has already contributed to the final result by lines 6-7. Consequently,

the memory can be reused to process the following vertices.

Example 6.1. As illustrated in Figure 4(a), after two subgraphs G1 and G2 are loaded into the

main memory, the setH{{𝑣} ×V2} will be allocated.H will first record the wedge count between

𝑣1 ∈ V1 and all vertices inV2. Once the process of 𝑣1 is completed,H will be reused for 𝑣4.
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Algorithm 4 IOBufs-edge

1: function IOBufs-edge(G𝑖 ,G𝑗 )

2: Load subgraph G𝑖 ,G𝑗 into the main memory

3: for 𝑢 ∈ V𝑖 do
4: InitializeH{{𝑢} × V𝑗 → N} in the main memory

5: for wedges (𝑢, 𝑣,𝑤) satisfying 𝑣 ∈ 𝑁G𝑖 (𝑢),𝑤 ∈ V𝑗 do
6: Φ← Φ + H (𝑢,𝑤)
7: H(𝑢,𝑤) ← H(𝑢,𝑤) + 1
8: return Φ

Witnessing butterflies.We show that IOBufs-edge actually belongs to 𝐴𝐵𝐹 . At first glance, as

IOBufs-edge follows the framework of Algorithm 1 to derive butterfly counting from wedges, it

may not witness all butterflies. Let us take a closer look at Algorithm 4. For any butterfly (𝑢, 𝑣,𝑤, 𝑥),
while locating the wedge of (𝑢, 𝑣,𝑤) in line 5, we must have all nonessential vertices 𝑣 and 𝑥 and

their associated edges in the main memory due to line 2. As a result, the butterfly has already been

witnessed in the main memory.

ComplexityAnalysis. The reuse of memory for wedges gives the space complexity of IOBufs-edge
as𝑂 ( |𝐸 |

𝑝
+ |𝑉 |

𝑝
) =𝑂 ( |𝐸 |

𝑝
). According to the space requirement of Remark 4.1, we can get 𝑝 = 𝑂 ( |𝐸 |

𝑀
),

and by Equation 1, we can derive the I/O cost of IOBufs-edge as 𝑂 ( |𝐸 |
2

𝑀𝐵
). Given that IOBufs-edge

belongs to 𝐴𝐵𝐹 , we claim its I/O optimality according to Theorem 5.4. The time complexity is

𝑂 (Λ + |𝐸 |
2

𝑀
) according to Section 4.3.

6.3 The IOBufs-wedge variant
IOBufs-wedge is given in Algorithm 5 which only maintains wedges in the main memory. The

algorithm first initializes a memory space ofH(V𝑖 ×V𝑗 ) for recording the wedges between the two

partitioned graphs. While organizing the graph as a sequence of the adjacent lists of vertices in the

secondary memory, the algorithm can load the data of 𝑁𝑖 (𝑣) ( 𝑁G𝑖 (𝑣) ∩V𝑖 ) and 𝑁 𝑗 (𝑣) sequentially
for all 𝑣 ∈ 𝑉 in a streaming manner (line 4).

Example 6.2. Figure 4(b) shows the process of IOBufs-wedge for G1,G2. The set ofH{V1 ×V2}
will be allocated in the first place. Then wedges are counted with edges sequentially loaded into

the main memory. For example, when counting the wedges with 𝑣3 as the center vertex, only

edges connecting 𝑣3 in the two subgraphs ((𝑣1, 𝑣3) and (𝑣3, 𝑣2)) will be loaded. In this case, a wedge

(𝑣1, 𝑣3, 𝑣2) is counted. As these edges will not be used in later computation, they can be dropped to

make room for the edges connecting next center vertex 𝑣4.

Algorithm 5 IOBufs-wedge

1: function IOBufs-wedge(G𝑖 ,G𝑗 )

2: InitializeH{V𝑖 ×V𝑗 → N} in the main memory

3: for 𝑣 ∈ 𝑉 do
4: Load 𝑁𝑖 (𝑣) = 𝑁G𝑖 (𝑣) ∩ V𝑖 and 𝑁 𝑗 (𝑣) = 𝑁G𝑗

(𝑣) ∩ V𝑗

5: for wedges (𝑢, 𝑣,𝑤) satisfying 𝑢 ∈ 𝑁𝑖 (𝑣),𝑤 ∈ 𝑁 𝑗 (𝑣) do
6: Φ← Φ + H (𝑢,𝑤)
7: H(𝑢,𝑤) ← H(𝑢,𝑤) + 1
8: return Φ

Witnessing wedges. Obviously, IOBufs-wedge must witness all wedges. We show how it differs

from the IOBufs-edge variant without witnessing the butterflies. Consider a butterfly (𝑢, 𝑣,𝑤, 𝑥).
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In one iteration that processes 𝑣 (line 3), it witnesses all vertices but 𝑥 ; in another iteration that

processes 𝑥 , it may fail to witness 𝑣 . Overall, IOBufs-wedge cannot guarantee simultaneously

witnessing all vertices of a butterfly in the main memory. As a result, IOBufs-wedge belongs to
𝐴𝑊𝐺 . More specifically, as it runs by only maintaining the wedges in the main memory, it is a

wedge-only 𝐴𝑊𝐺 .

Complexity analysis. IOBufs-wedge consumes 𝑂 ( |𝑉 |
2

𝑝2
) memory space to maintain H(V𝑖 ×

V𝑗 ), which gives 𝑝 = 𝑂 ( |𝑉 |√
𝑀
) according to Remark 4.1. By Equation 1, we have the I/O cost of

IOBufs-wedge as 𝑂 ( |𝐸 | |𝑉 |√
𝑀𝐵
), which is optimal according to Theorem 5.7. Similarly, we can derive

the time complexity as 𝑂 (Λ + |𝐸 | |𝑉 |√
𝑀
).

Table 2. Comparison of IOBufs-edge and IOBufs-wedge.

Variant 𝑝 Time complexity Space complexity I/O complexity

IOBufs-edge 𝑂 ( |𝐸 |
𝑀
) 𝑂 (Λ + |𝐸 |

2

𝑀
) 𝑂 ( |𝐸 |

𝑝
) 𝑂 ( |𝐸 |

2

𝑀𝐵
)

IOBufs-wedge 𝑂 ( |𝑉 |√
𝑀
) 𝑂 (Λ + |𝐸 | |𝑉 |√

𝑀
) 𝑂 ( |𝑉 |

2

𝑝2
) 𝑂 ( |𝐸 | |𝑉 |√

𝑀𝐵
)

6.4 The adaptive algorithm
Table 2 quickly compares IOBufs-edge and IOBufs-wedge. Obviously, we can adaptively choose

between the two variants based on whichever yields lower I/O cost, as:

𝑐1 |𝐸 |2
𝑀𝐵

<

√
𝑐2 |𝐸 | |𝑉 |√
𝑀𝐵

⇒ 𝑑 (= 2|𝐸 |
|𝑉 | ) < 𝑐3

√
𝑀, (6)

where 𝑐3 =
2

√
𝑐2

𝑐1
. In other words, we should use IOBufs-edge when the graph is sufficiently

sparse, namely 𝑑 < 𝑐3
√
𝑀 , and use IOBufs-wedge otherwise. Therefore, we have IOBufs adaptively

configured as:

Algorithm 6 IOBufs, the adaptive variant

1: if 𝑑 < 𝑐3
√
𝑀 then

2: apply IOBufs-edge in Algorithm 2

3: else
4: apply IOBufs-wedge in Algorithm 2

Obviously, the I/O complexity of IOBufs is 𝑂 (min( |𝐸 |
2

𝑀𝐵
,
|𝐸 | |𝑉 |√
𝑀𝐵
)). According to Theorem 5.9, we

claim that IOBufs is I/O-optimal. Besides, the time complexity is 𝑂 (Λ +min( |𝐸 |
2

𝑀
,
|𝐸 | |𝑉 |√

𝑀
)).

7 PARALLELIZATION AND IMPLEMENTATION
In this section, we focus on the parallelization of IOBufs. Henceforth, we use 𝑡 to denote the degree
of parallelism (DoP). Note that it is trivial to parallelize IOBufs-wedge: we simply replace the

for loop in line 3 of Algorithm 5 with a parfor, and all working threads can share a common

H . However, it is non-trivial to do so for IOBufs-edge without compromising its I/O efficiency.

Observing that the main issue of the naïve approaches is the coarse-grained parallelism, we propose

a more fine-grained approach to better tradeoff parallelism and I/O efficiency of IOBufs-edge.
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7.1 Naïve coarse-grained approaches
A “Naïve” approach for parallelizing IOBufs-edge in Algorithm 2 is to assign the subtask of each

pair of (G𝑖 ,G𝑗 ) to a working thread. However, this will cause the space complexity to increase by 𝑡

times, which consequently leads to the increment in I/O cost. For IOBufs-edge, as the total space
cost becomes 𝑂 (𝑡 · |𝐸 |

𝑝
) and must still be accommodated by the main memory of size 𝑀 , we can

derive that 𝑝 = 𝑂 (𝑡 · |𝐸 |
𝑀
) and the I/O cost as 𝑂 (𝑡 · |𝐸 |

2

𝑀𝐵
).

We next discuss a bulk-synchronous parallel (BSP) [51] mechanism by developing an interactive

workflow for Algorithm 2, where each iteration handles a pair of partitioned subgraphs. The

parallelization is applied within each iteration, and all working threads will synchronize at the

end of the current iteration before moving to the next. For IOBufs-edge, it is rather parallelizing
lines 3-7 in Algorithm 5. We denote𝑇𝑤𝑐 {𝑈1 ×𝑈2} for any𝑈1,𝑈2 ⊆ 𝑉 as the task of counting wedges

between the pairs of vertices in𝑈1×𝑈2. As BFC-VP++, we conduct a parfor in line 3 of Algorithm 4

to parallelize the subtask of 𝑇𝑤𝑐 {{𝑢} × V𝑗 } for all 𝑢 ∈ V𝑖 . Critically, the allocation ofH in line 4

must be carefully considered. If all working threads share a commonH{V𝑖 ×V𝑗 }, which is called

“BSP-Shared” (“BSP-S” for short), the algorithm degrades to IOBufs-naïve that must have large I/O

and time complexity. Alternatively, a solution called “BSP-Shared/nothing” (“BSP-SN” for short)

makes each working thread to maintain a local H in order to emancipate from data races. It is

trivial to derive the space cost as 𝑂 ( |𝐸 |
𝑝
+ 𝑡 |𝑉 |

𝑝
), and the I/O cost as 𝑂 ( |𝐸 |

2

𝑀𝐵
+ 𝑡 |𝑉 | |𝐸 |

𝑀𝐵
). Such I/O cost

may be huge, as it is likely to have 𝑡 > 𝑑 when processing a sparse graph on the modern hardware.
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Fig. 5. Performance of four parallel techniques on Delicious (refers to Table 3) with 𝑡 = 1, 4, 56.

To reveal that none of the above alternatives - namely “Naïve”, “BSP-S”, and “BSP-SN” - scale

well, we conducted a micro benchmark that compares alternatives with our “Fine-Grained” (“FG”

for short) solution, and the results of overall running time and numbers of I/Os are shown in

Figure 5. For a test that cannot terminate within one hour, we mark OT for running time, and

manually calculate its I/O cost. “BSP-S” fails to complete all test cases. “Naïve” scales poorly,

and it even runs OT when 𝑡 = 56. “BSP-SN” still performs similarly as “FG” when 𝑡 = 4, but it

cannot further benefit from more parallelism and is outperformed by “FG” by a large margin when

𝑡 = 56. The corresponding I/O cost supports the performance results in all tests. Noticeably, when 𝑡

increases, the I/O cost of “FG” almost remains fixed, while those of the alternative solutions increase

significantly.

7.2 Fine-grained parallelism
We observe that the dilemma of trading off the parallelism and the I/O efficiency of all approaches

in Section 7.1 lies in the coarse-grained parallelism, namely attempting to parallelize a subtask

of 𝑇𝑤𝑐 {𝑈1 × 𝑈2} with some large 𝑈1 or 𝑈2. In response to this, we propose a more fine-grained
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approach based on “BSP-shared-nothing”
3
by further dividing the subtask of 𝑇𝑤𝑐 {{𝑢} × V𝑗 } into 𝑞

disjoint pieces of

{𝑇𝑤𝑐 {{𝑢} × V𝑗,1},𝑇𝑤𝑐 {{𝑢} × V𝑗,2}, . . . ,𝑇𝑤𝑐 {{𝑢} × V𝑗,𝑞}},

whereV𝑗 = V𝑗,1 ∪V𝑗,2 ∪ · · · ∪ V𝑗,𝑞 andV𝑗,𝑖𝑥 ∩V𝑗,𝑖𝑦 = ∅ for any 1 ≤ 𝑖𝑥 ≠ 𝑖𝑦 ≤ 𝑞. We will see that

the configuration of the value 𝑞 is key to the parallelism-I/O tradeoff, but let us first check out the

parallel IOBufs-edge algorithm in Algorithm 7. Line 4 is responsible for further dividing the task.

In line 6, a concurrent queue is initialized to hold all vertices inV𝑖 , which is popped out in line 8

for each working thread to initiate processing a subtask of𝑇𝑤𝑐 {{𝑢} ×V𝑗,𝑘 }. Lines 7-13 embody the

sub-routine to run in parallel. The process will not stop until the query 𝑄 becomes empty. Each

working thread of id 𝜏 (1 ≤ 𝜏 ≤ 𝑡 ) maintains a local Φ𝜏 for the butterflies already counted. Finally,

an aggregation is conducted to summarize the Φ𝜏 for all working threads as the final result. Note

that by letting each thread pop vertices from a concurrent queue rather than iterate over V𝑗 in

a round-robin fashion, we actually adopt the dynamic-scheduling strategy that is shown to have

better load balance in [55].

Algorithm 7 IOBufs-edge, the parallelization

1: function IOBufs-edge(G𝑖 ,G𝑗 )

2: Load subgraph G𝑖 ,G𝑗 into the main memory

3: Configure 𝑞 according to Equation 7

4: PartitionV𝑗 into 𝑞 disjoint parts as {V𝑗,1,V𝑗,2 . . . ,V𝑗,𝑞}
5: for 𝑘 in {1 . . . 𝑞} do
6: Place all vertices ofV𝑖 in a concurrent queue 𝑄

7: parfor an idle thread 𝜏 ∈ {1, . . . , 𝑡} do
8: 𝑢 = 𝑄.𝑝𝑜𝑝 ()
9: InitializeH{{𝑢} × V𝑗,𝑘 → N}
10: for wedges (𝑢, 𝑣,𝑤) satisfying 𝑣 ∈ 𝑁G𝑖 (𝑢),𝑤 ∈ V𝑗,𝑘 do
11: Φ𝜏 ← Φ𝜏 + H (𝑢,𝑤)
12: H(𝑢,𝑤) ← H(𝑢,𝑤) + 1
13: until 𝑄 is empty

14: Aggregate Φ =
∑𝜏=𝑡

𝜏=1 Φ𝜏

15: return Φ

Our “Fine-grained” technique renders space and I/O complexity as 𝑂 ( |𝐸 |
𝑝
+ 𝑡

𝑞
· |𝑉 |

𝑝
) and 𝑂 ( |𝐸 |

2

𝑀𝐵
+

𝑡
𝑞
· |𝑉 | |𝐸 |

𝑀𝐵
), respectively. We immediately re-approach I/O optimality by setting 𝑞 = Θ(𝑡). However,

a large 𝑞 may result in a subtask being too fine-grained to run efficiently in parallel [44] due to the

scheduling overhead. Therefore, we consider how to tradeoff the I/O cost and scheduling cost. Let

𝐶I/O and𝐶sched denote the cost of conducting one I/O, and schedule one subtask, respectively. While

partitioning a graph into 𝑝 parts and a subtask into 𝑞 parts, we have
2𝑝 |𝐸 |
𝐵

total I/Os to conduct,

and 𝑝𝑞2 subtasks to schedule. As a result, we have the following optimization problem:

Minimize
|𝐸 |
𝐵

𝐶I/O

𝐶sched

𝑝 + 𝑝2𝑞,

subject to 𝑐1
|𝐸 |
𝑝
+ 𝑐2

𝑡 |𝑉 |
𝑝𝑞
≤ 𝑀, and 𝑝, 𝑞 ∈ N+ .

(7)

3
We also study both “Naïve” and “BSP-S”, but find little room for improvement.
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Given 𝑝 , it is obvious that 𝑞 must be as small as possible while satisfying the space requirement.

We then iterate 𝑝 = ⌈𝑐1 |𝐸 |
𝑀
⌉ (when 𝑞 → ∞) to 𝑝 = ⌈𝑐1 |𝐸 |+𝑐2𝑡 |𝑉 |

𝑀
⌉ (when 𝑞 = 1) and derive the

corresponding 𝑞 till we obtain a pair of 𝑝 and 𝑞 that can minimize 𝑓 . In practice,
𝐶I/O

𝐶sched

can be

measured as follows: we first drive 𝑝 by 𝑞 according to the memory constraint and make the

objective function a function of 𝑞, namely 𝑓 (𝑞); then we iterate the 𝑞 value to do some preliminary

tests on certain graphs to obtain a 𝑞∗ value that renders the best performance; we finally obtain

the
𝐶I/O

𝐶sched

value by letting 𝑓 ′(𝑞∗) = 0, where 𝑓 ′ denotes the differential of 𝑓 .

Remark 7.1. When 𝑀 >> |𝐸 |, namely the main memory is arbitrarily large, we can leverage

Equation 7 to derive an interesting result. Given that the lower bound of 𝑝 as ⌈𝑐1 |𝐸 |
𝑀
⌉ = 1 and the

upper bound ⌈𝑐1 |𝐸 |+𝑐2𝑡 |𝑉 |
𝑀

⌉ = 1, we must have 𝑝 = 1 and 𝑞 = 1 to minimize Equation 7. In this case,

IOBufs-edge becomes the parallel BFC-VP++ [55].

8 EVALUATION
All evaluated algorithms are implemented in C++ and compiled with g++ 7.5.0. The optimization

flag is set as “-O3”. We run all tests using an Intel Xeon Gold 6330 CPU of 56 physical cores, together

with a 128GB DDR4 RAM and a 1TB SSD disk. Unless otherwise specified, we set the main memory

capacity to 25% of the graphics size by default, i.e. 𝑀 = 25%|𝐸 |. Note that we control memory

usage using cgroup configuration [1] (a Linux kernel feature) in order to diminish the impact of

caching for properly benchmarking the I/O cost. Throughout the experiments, we mark OT if

an algorithm cannot terminate in one hour. For an algorithm running OT, the presented #I/Os is

manually computed according to Equation 1.

Table 3. Graph statistics.

Graph Source |𝑉 | |𝐸 | 𝑑 Φ Sizes

MANN [46] 3.32E+03 5.51E+06 3,316 1.51E+13 44M

Flickr [26] 5.00E+05 8.55E+06 34 3.53E+10 72M

Journal [26] 1.07E+07 1.12E+08 21 3.30E+12 1.0G

Delicious [26] 3.46E+07 1.02E+08 6 5.69E+10 1.1G

Tracker [26] 4.04E+07 1.41E+08 7 2.01E+13 1.4G

Orkut [26] 1.15E+07 3.27E+08 57 2.21E+13 2.7G

Bi-twitter [55] 4.17E+07 6.02E+08 29 6.30E+13 5.1G

Bi-sk [55] 5.06E+07 9.11E+08 36 1.22E+14 7.7G

Bi-uk [55] 7.77E+07 1.33E+09 34 4.89E+14 11G

Clueweb [11] 9.78E+08 3.74E+10 76 1.49E+18 286G

Datasets. The statistics and sources of the graphs are summarized in Table 3. Particularly, MANN

is a real dense graph provided by DIMACS [14] for graph challenges. Journal, Delicious, and Orkut

are social networks representing user-group memberships of online communities. Flickr [38] shows

the user-photo relationship on an online photo-sharing website. Tracker is the web tracking dataset

representing the relationship between the internet domains and the trackers they contain. Bi-twitter,

Bi-sk, and Bi-uk are subgraphs of large real social graph twitter [27] and web graph sk-2005 and

uk-2006-05 from WebGraph [6–8]. We follow [55] to construct bipartite graphs from them. Among

the graphs, we use MANN, Journal, Delicious, and Orkut as default datasets in some tests. Clueweb

is a gigantic web graph whose size is larger than the configured memory of our machine. It is used

to test the real-life performance of our algorithm without manually controlling the memory. In

addition, we apply the kronecker generator [30] to generate synthetic graphs to purposely control

the statistics. All graphs have been preprocessed into undirected simple graphs, and organized

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 34. Publication date: May 2023.



I/O-Efficient Butterfly Counting at Scale 34:19

in the format of compressed sparse row (CSR). Each vertex is identified by a 4-byte integer, and

their ids are rearranged according to the degree (priority) following [55]. The size of each graph is

reported accordingly. We by default apply the “Radix” strategy [29] to partition the graph, as will

be discussed in Section 8.6.

Algorithms. Our empirical studies are conducted against the following algorithms:

The IOBufs variants. IOBufs-naïve, IOBufs-edge, and IOBufs-wedge are our algorithms given in

Algorithm 3, Algorithm 4, and Algorithm 5, respectively. IOBufs denotes the I/O-optimal algorithm

in Algorithm 6 that can adaptively choose between IOBufs-edge and IOBufs-wedge based on

graph density. In the sequential context, the partition number 𝑝 will be configured according to

Remark 4.1 for each variant. Additionally, IOBufs-edge, IOBufs-wedge, and IOBufs can run in

parallel according to Section 7. We use the DoP 𝑡 = 56 by default. 𝑝 and 𝑞 will be either configured

according to Equation 7 by default or specified otherwise. Given the graph storage, the constant

values of 𝑐1, 𝑐2 are determined by the memory usage of the edges and wedges, respectively, and 𝑐3
is computed in Equation 6. We set 𝑐1 = 16 as it takes 4 bytes to store the end vertex of an edge, and

each edge must be stored in two directions for two partitioned subgraphs; 𝑐2 = 4 as we record the

wedge count between two vertices as an integer; and immediately 𝑐3 = 0.25.

The BFC variants.We compare two BFC variants [55], namely BFC-VP++ and BFC-EM. BFC-VP++
is the most optimized variant of the kind developed in the parallel (in-memory) context, while

BFC-EM stands for the variant leveraging disk as the secondary memory. The authors have not

made the source codes publicly accessible. Thus, we apply our IOBufs-edge running in parallel

with arbitrarily large𝑀 as BFC-VP++ (Remark 7.1). Since BFC-EM cannot fit into our framework,

we implement the algorithm by referencing the paper and consulting with the authors.

EMRC. The EMRC algorithm is introduced in [68]. The authors do not provide the source codes,

but it is actually IOBufs-naïve with 𝑝 = ⌈ |𝐸 |
𝑀
⌉ according to Section 4.3. However, it runs OOM in

most cases under this original setting. Thus, we set 𝑝 = ⌈𝑐1 |𝐸 |
𝑀
+ 𝑐2 |𝑉 |√

𝑀
⌉ for EMRC.

Note that the authors of BFC and EMRC agree that we faithfully reproduced their results.

8.1 Compare with the state of the arts
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Fig. 6. The performance of IOBufs, BFC-EM, and EMRC.
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In this section, we compare IOBufs with the hierarchical-memory algorithms: BFC-EM and

EMRC. Figure 6 shows the results of wall clock time and #I/Os on all graphs in Table 3. For EMRC,
it suffers from huge I/O cost and thus runs OT in all cases except MANN. According to our analysis

in Section 4.3, EMRCmust maintain both wedges (𝑂 ( |𝑉 |
2

𝑝2
)) and edges (𝑂 ( |𝐸 |

𝑝
)) in the main memory,

while IOBufs only maintains one of them. In a dense graph such as MANNwhose wedges and edges

are relatively close in volume (by |𝐸 | ≈ |𝑉 |2/𝑝 in each partition), EMRC can perform similarly to

IOBufs. While in other sparse datasets which contain much more wedges than edges, performance

of EMRC downgrades dramatically. Let us look into BFC-EM whose I/O complexity is determined

by the number of wedges in the graph. Observe that it performs worse on the graphs with more

wedges. Particularly on MANN, a small but dense graph, BFC-EM performs the worst among all

algorithms. Overall, based on the available cases, IOBufs (single thread) outperforms BFC-EM by

25× on average in term of wall clock time. Regarding I/O cost, it incurs 209× and 364× less I/Os
than BFC-EM and EMRC, respectively. Moreover, we can further speed up IOBufs via parallelism.

Observe that the I/O cost only slightly increases in the parallel cases, mostly due to the fine-grained

parallelism. Henceforth, unless otherwise specified, one may be aware that the IOBufs-wedge
variant is chosen for the dense graph MANN, while IOBufs-edge variant is used for all other

graphs.

Furthermore, to reveal the ability of IOBufs on the huge real-world graph, we run IOBufs on the

gigantic Clueweb [6–8] containing almost 1 billion vertices and 37 billion edges, a total of 286GB,

using all the configured memory (128GB) of our machine. The experimental results show that

IOBufs successfully counts butterflies at the scale of quintillions (10
18
) on Clueweb in 2182s, while

BFC-EM and EMRC run OT, and their I/O costs are extremely large (more than 10
11
I/Os), and thus

omitted in Figure 6(b).

8.2 Impact of memory
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Fig. 7. Memory size impact (Wall clock time).

As indicated in [21], memory size is critical to the performance of hierarchical-memory algorithms.

We hence vary𝑀 from 1%|𝐸 | to 25%|𝐸 | to evaluate the algorithms of BFC-EM, EMRC, and IOBufs,
and report the results in Figure 7 and Figure 8. Clearly, BFC-EM cannot benefit from a larger

memory configuration, as its performance almost remains fixed while increasing the memory size.

EMRC can still only handle MANN, but it shows performance improvement in this case as the

growth of memory. Our IOBufs demonstrates an obvious dropping trend for both wall clock time

and #I/Os when there is larger memory to run the algorithm. Such a trend is more notable in

the parallel cases because there are larger subtasks to run rendering lower scheduling overhead

when the memory is sufficient (according to space requirement). Notice that the single-threaded

IOBufs performs better than the multi-threaded version with𝑀 = 1%|𝐸 | in Figure 7(c). With such

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 34. Publication date: May 2023.



I/O-Efficient Butterfly Counting at Scale 34:21

1.25× 22 1.25× 23 1.25× 24

Memory size (%)

10−1

100

101

102

T
im

es
(s

)

BFC-EM EMRC IOBufs (t=1) IOBufs (t=56)

1 5 10 15 20 25
Memory size (%)

105

106

107

108

109

1010

#
I/

O
s

(a) MANN.

1 5 10 15 20 25
Memory size (%)

107

108

109

1010

1011

#
I/

O
s

(b) Journal.

1 5 10 15 20 25
Memory size (%)

107

108

109

1010

1011

#
I/

O
s

(c) Delicious.

1 5 10 15 20 25
Memory size (%)

107

108

109

1010

1011

#
I/

O
s

(d) Orkut.

Fig. 8. Memory size impact (I/O cost).

small memory, each partitioned subgraph and the corresponding workload become too small to

benefit from parallelism. Noticeably, IOBufs consistently outperforms the competitors throughout

all memory configurations. Its performance is already reasonably good even with 1%|𝐸 | memory,

while we recommend at least 5%|𝐸 | memory if possible to better exploit parallelism.

8.3 IOBufs-edge vs. IOBufs-wedge
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Fig. 9. Cost of IOBufs-edge and IOBufs-wedge on five generated graphs with different average degrees.

Varying degree:As discussed in Section 6, the average degree𝑑 will affect the choice of IOBufs-edge
and IOBufs-wedge of our algorithm. We show the rationale for this design choice. To do so, we

generate 5 graphs using kronecker [30] with (almost) fixed number of edges and vary 𝑑 as shown

in Figure 9. We use the default memory of 25%|𝐸 | ≈ 5𝐺𝐵. Therefore, the dividing point of the

degree is roughly 0.25
√
𝑀 ≈ 18000. As shown in Figure 9, the two variants of the algorithm per-

form comparatively around the dividing point. On the left-hand side where the degrees are larger,

IOBufs-wedge performs better than IOBufs-edge. On the other side where the degrees are smaller,

IOBufs-edge outperforms IOBufs-wedge in turn. The I/O cost reflects the same trend as running

time. The results are consistent with our discussions in Section 6.

Transitivity closure analysis: In the network analysis, it is interesting to construct a TC graph

from the base graph by adding edges between vertices that are originally disconnected but form

transitive closures (i.e., wedges) [25]. Let the base graph be 𝐺0, 𝐺1 be the TC graph constructed

from𝐺0, and𝐺2 be the one constructed from𝐺1, and so forth. This process can increase the density

of a graph, and thus is used to study the performance of IOBufs-edge and IOBufs-wedge. We

generate a graph with 𝑑 = 16 and |𝑉 | = 2
14

as 𝐺0, based on which 𝐺1 and 𝐺2 are constructed.

Figure 10 illustrates the results on these graphs. As the average degree increases, IOBufs-edge

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 34. Publication date: May 2023.



34:22 Zhibin Wang et al.

RawExtend-1Extend-2

105

106

107

#
I/

O
s

IOBufs-edge IOBufs-wedge

G0 G1 G2

10−1

100

101

102

T
im

e
(s

)

(a) Wall clock time.

G0 G1 G2

104

105

106

107

#
I/

O
s

(b) I/O cost.

G0 G1 G2

102

103

104

d

(c) Degree.

Fig. 10. Performance of IOBufs-edge and IOBufs-wedge on TC graphs

initially outperforms IOBufs-wedge by a large margin on𝐺0, and is caught up with and eventually

overturned by IOBufs-wedge on 𝐺1 and 𝐺2.

8.4 Scalability
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Fig. 11. Scale-up performance of IOBufs, varying 𝑡 .

Scale-up. To reveal the scale-up performance of our fine-grained parallel technique, we vary the

number of threads 𝑡 and run IOBufs in different memory settings on the default graphs. Note that we

include the case that𝑀 = ∞, in which IOBufs-edge becomes BFC-VP++ according to Remark 7.1.

Observe that the cases of smaller memory typically have worse scale-up performance. In these

cases, there are more subtasks to run, and the scheduling cost increases accordingly. Nevertheless,

it already scales almost as well as the in-memory algorithm BFC-VP++ by slightly increasing the

memory to 25%|𝐸 |. Overall, the performance of the algorithms with𝑀 = 10%|𝐸 |, 25%|𝐸 |, |𝐸 |, and∞
are improved by 11×, 21×, 20× and 23×, respectively, while increasing the working threads from
1 to 56. The case of 𝑀 = |𝐸 | is also an interesting baseline. Note that the in-memory BFC-VP++
cannot run in this case because there is no room for maintaining the wedges, while our IOBufs can
achieve competitive performance.

Data-scale. To study the data-scale performance, we apply kronecker generator and generate: 1) 5

sparse graphs with fixed 𝑑 as 16 and varying |𝑉 | from 2
23
to 2

27
; 2) 5 dense graphs with 𝑑 = 50%|𝑉 |

and varying |𝑉 | from 2
12
to 2

16
. The results of running the algorithm in different memory settings

are reported in Figure 12. According to Section 6, the IOBufs-edge variant will be adopted except

for the cases of testing on the dense graphs with𝑀 = 10%|𝐸 | and𝑀 = 25%|𝐸 |. Using𝑀 = ∞ as the

baseline, IOBufs scales pretty well in all cases, even when configuring 10%|𝐸 | memory size.
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Fig. 12. Data-scale performance of IOBufs, varying graph sizes.
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Fig. 13. Performance of fine-grained parallelism of IOBufs, varying 𝑞.

8.5 The fine-grained parallelism
We evaluate the effectiveness of the fine-grained parallelism proposed in Section 7. We run IOBufs
(or more specifically IOBufs-edge) in different memory settings by varying the 𝑞 value from 1 to

56, and show the results of the four graphs in Figure 13. Note that here we replace MANN in the

default graphs as Tracker because IOBufs-wedge does not need fine-grained parallelism. On each

line in Figure 13, there is a solid-filled point that represents the derived value of 𝑞 in Equation 7,

which aligns very well with the 𝑞 that actually gives the best performance. Observe that except

𝑀 = ∞, the performance of all cases demonstrates a trend of first descending and then ascending

as the increment of 𝑞. In the beginning, the performance is improved because a larger 𝑞 can result

in a smaller I/O cost. After passing the optimal value, the performance declines in turn as a larger 𝑞

introduces more cost for scheduling than benefit. Note that for𝑀 = ∞, the best configuration of 𝑞

(as well as 𝑝) is always 1, as we analyzed in Remark 7.1.

8.6 Impact of partition strategy
Given a vertex of id 𝑖 , we compare three commonly-used partition strategies as mentioned in

Section 4.2: 1) Random: place the vertex in the partition of 𝑟𝑎𝑛𝑑 (𝑖)%𝑝 , where 𝑟𝑎𝑛𝑑 () is a pseudo-
random number generator; 2) Radix [29]: place the vertex in the partition of 𝑖%𝑝; 3) Range [68]:
place the vertex according to which range its id belongs to, or more specifically, in the partition of

⌊𝑖 ×𝑝/|𝑉 |⌋. We evaluate the degree of balance achieved by a partitioning strategy via the imbalance
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Fig. 14. Performance of three partitioning approaches.

ratio [41], denoted as 𝐼𝑅 =
max𝑖 ( |E𝑖 |)
min𝑖 ( |E𝑖 |) . Figure 14 reports the results of the three partition strategies

on a dense graph MANN and a sparse graph Journal, in which Time and #I/Os are relative to the

“Random” strategy. The results of “Random” and “Radix” are very similar. To be precise, “Radix” is

slightly more balanced than “Random”, and on top of which the algorithm also performs slightly

better. Because of this, we use “Radix” as the default strategy. The “Range” strategy performs very

differently on MANN and Journal, which is resulted from the rearrangement of vertex ids by the

degrees. On MANN where all vertices roughly have the same degree, the partition is balanced, but

on Journal, the partition in preceding ranges clearly involves vertices of larger degree, and thus

more edges. The poor performance of the algorithm is observed with such an imbalanced partition.

In summary, the partition strategy should have little impact on IOBufs as long as it produces a

balanced number of edges across partitions.

9 CONCLUSION
We study the I/O-efficient algorithm for butterfly counting at scale in this paper. Observing that

it suffices to witness only a subgraph rather than the whole structure in the main memory for

counting butterflies, we propose the semi-witnessing algorithm and prove that no semi-witnessing

algorithm for butterfly counting can guarantee 𝑜 (min( |𝐸 |
2

𝑀𝐵
,
|𝐸 | |𝑉 |√
𝑀𝐵
)) I/Os. We then develop the

IOBufs algorithm that can arrive at the I/O lower bound, and parallelize the algorithm with a

fine-grained technique to tradeoff the I/O and computation efficiency. The experimental results

have verified the effectiveness of all our proposed techniques, which makes IOBufs outperform the

state of the arts by orders of magnitude.
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