
Noname manuscript No.
(will be inserted by the editor)

Parallelization of Butterfly Counting on Hierarchical Memory

Zhibin Wang · Longbin Lai · Yixue Liu · Bing Shui · Chen Tian ·
Sheng Zhong

Received: date / Accepted: date

Abstract Butterfly (a cyclic graph motif) counting is
a fundamental task with many applications in graph
analysis, which aims at computing the number of but-
terflies in a large graph. With the rapid growth of graph
data, it is more and more challenging to do butter-
fly counting due to the super-linear time complexity
and large memory consumption. In this paper, we study
I/O-e�cient algorithms for doing butterfly counting on
hierarchical memory. Existing algorithms of this kind
cannot guarantee I/O optimality. Observing that in or-
der to count butterflies, it su�ces to “witness” a sub-
graph instead of the whole structure, a new class of al-
gorithms called semi-witnessing algorithm is proposed.
We prove that a semi-witnessing algorithm is not re-

stricted by the lower bound ⌦(|E|
2

MB) of a witnessing al-

gorithm, and give a new bound of ⌦(min(|E|
2

MB ,
|E||V |
p
MB

)).
Subsequently, we develop the IOBufs algorithm that
manages to approach the I/O lower bound, and thus
claim its optimality. Finally, we investigate the paral-
lelization of IOBufs to improve its performance and scal-
ability. To support various hardware configurations, we
introduce a general parallel framework, PIOBufs. Our
analysis indicates that the key to implementing PIOBufs

on multi-core CPUs lies in the fine-grained task divi-
sion. Furthermore, we extend the CPU-tailored PIOBufs

to harness the extensive parallelism that GPUs pro-
vide. Our experimental results show that IOBufs per-

Z. Wang, Y. Liu, B. Shui, C. Tian, S. Zhong
Nanjing University, State Key Laboratory for Novel Software
Technology, Nanjing, Jiangsu, China
E-mail: {wzbwangzhibin, sheng.zhong}@gmail.com,
{mf20330052,191098191}@smail.nju.edu.cn,
tianchen@nju.edu.cn

L. Lai
Alibaba Group, Hangzhou, Zhejiang, China
E-mail: Longbin.lailb@alibaba-inc.com

forms better than established algorithms such as EMRC,
BFC-EM and G-BFC. Thanks to its I/O-e�cient design,
IOBufs can handle large graphs that exceed the main
memory capacity on both CPUs and GPUs. A signifi-
cant result is that IOBufs can manage butterfly counting
on the Clueweb graph, which has 37 billion edges and
quintillions (1018) of butterflies.

Keywords Graph; butterfly counting; hierarchical
memory; parallel algorithm; GPGPU

1 Introduction

Butterfly (a.k.a., rectangle) is a cyclic motif1 that is
fundamental in graph analysis. Particularly, the but-
terfly is the smallest non-trivial cohesive motif [78,80,
77,76] on a bipartite graph [41,61,3,97], where vertices
can be divided into two disjoint sets, and edges ex-
ist only between the two sets of vertices. Consider a
graph G = (V, E), where V and E are the sets of ver-
tices and edges, respectively. The problem of butter-
fly counting is to compute the total number of butter-
flies in G. Butterfly counting plays an important role in
many applications, such as spam detection [19,81,82],
recommendation systems [70], word-document cluster-
ing [16], research group identification [15], and link pre-
diction according to transitivity theory [11]. Recently,
Lyu et al. [46] have leveraged butterfly counting to
prune infeasible vertices in a fraud-detection scenario
of e-commerce.

A butterfly can be naturally decomposed into two
wedges, where a wedge is an intersection of two edges,
as demonstrated in Figure 1. Thus, it is a common prac-
tice to first count wedges between each pair of vertices

1 Following a convention, we call a small structure as a
motif to avoid causing ambiguity with the data graph.

2 Zhibin Wang et al.

as intermediate states and use the wedge count to fur-
ther count butterflies. Thus, edges and wedges (as in-
termediate results) are two dominant types of data to
materialize in memory for counting butterflies.

Enumerate
Wedges

…

v5v4v3v2v1
……12∅v1
……………v2

……

(a) Example graph (b) Wedges

Form
Butterflies

(c) Hashtable for maintaining wedge counts(d) A butterfly

v1 v2
v3v4

v5 v1 v2

v3
v1 v2

v5
v1 v3

v2

v1

v3

v2

v5

Fig. 1: An example of butterfly counting.

With the rapid growth of graph data, the compu-
tation resources for butterfly counting (e.g., process-
ing capacity and memory) can quickly drain due to its
super-linear time complexity and large memory con-
sumption. Fortunately, the development of modern ar-
chitecture brings in new opportunities. Regarding pro-
cessing capacity, modern multi-core CPUs [24,48,67],
GPUs [83,47,54], and FPGAs [92,18,42] have intro-
duced massive parallelism that expands processing ca-
pacity to an unprecedented extent. Regarding mem-
ory configuration, people tend to leverage hierarchi-
cal memory, i.e., faster yet smaller on-board (main)
memory as the primary data container at runtime and
relatively slower yet larger secondary memory to hold
data overflowed from the main memory. A typical prac-
tice adopts RAM as the main memory, and Solid State
Drive (SSD), Hard Disk Drive as the secondary mem-
ory. More recent work in the cloud [74] has used the
local VM (virtual machine) memory as the main mem-
ory and the cloud storage such as S3 as the secondary
memory.

1.1 Existing solutions and their weakness

We review existing methods for butterfly counting and
their weakness in three settings: in-memory sequential,
hierarchical-memory, and parallel.

In-memory sequential setting. ExactBFC [65] is a
sequential algorithm that optimizes butterfly counting
by using vertex priority to avoid duplicate calculations.

However, the sequential algorithm cannot fully utilize
the processing capacity of modern hardware and can
not scale to large graphs. Note that the primary com-
putation of butterfly counting is to count the wedges
(butterflies) between all pairs of vertices, and we de-
note the task as Twc{V ⇥ V }.

Hierarchical-memory setting. BFC-EM [78] and
EMRC [98] have been proposed to leverage disk as the
secondary memory to ease the main-memory shortage.
Henceforth, we use M to denote the size of the main
memory and B to denote the size of a data block that
serves as the data unit exchanged between the main
and secondary memories. Particularly, BFC-EM loads
the edges from the disk in batches to compute wedges.
After completing the current batch, the wedges are im-
mediately spilled to the disk to make room for the next
batch. BFC-EM incurs O(⇤

B) I/Os, where ⇤ denotes the
number of wedges in the graph. The I/O complexity
is insensitive to the main memory size M , making it
incapable of benefiting from more memory.

Alternatively, EMRC partitions the graph into p sub-
graphs to fit in the main memory, producing a total of
p
2 tasks for the wedge counting between each pair of

subgraphs. The authors proved that no witnessing al-

gorithm for butterfly counting could guarantee o(|E|
2

MB)
I/Os. Here, a witnessing algorithm [28] terms a class
of algorithms that must “see” all occurrences of the
motif (here butterfly) in the main memory. They fur-

ther showed that EMRC arrives at O(|E|
2

MB) I/Os in the
worst case, thus claiming its I/O optimality. Neverthe-

less, we find out that a non-negligible O(|V |
2

p2) space
for materializing wedges has been overlooked in EMRC,
which may cause memory overflow for processing large
graphs. After consulting with the authors, we fix the
issue in Section 4.3. However, this leads to larger I/Os

of EMRC as O(|E|
2

MB + |E||V |
p
MB

) and overturns its I/O op-
timality.

Parallel setting. Given the core task of Twc{V ⇥V } for
butterfly counting, it is straightforward to parallelize
the subtasks of Twc{{u} ⇥ V } for 8u 2 V , as proposed
by BFC-VP++ [78]. While BFC-VP++ is specifically de-
signed to optimize memory usage through reuse, it still
demands a space complexity of O(|E| + W |V |) given
W working threads. When adapting this algorithm to
modern hardware, especially GPUs that often deploy
thousands of threads, memory constraints become pro-
nounced. In the context of GPUs, G-BFC [86] was intro-
duced to enhance butterfly counting by leveraging the
massive parallelism of these devices. However, G-BFC
still faces challenges related to high memory consump-
tion – a significant concern given the generally smaller
memory capacity of GPUs. Additionally, while G-BFC

Parallelization of Butterfly Counting on Hierarchical Memory 3

aims to optimize for the hierarchical parallelism of a
GPU, it inadvertently incorporates algorithms with in-
creased time complexity.

It is important to highlight that existing algorithms
for hierarchical memory have been exclusively designed
for sequential execution. In contrast, all existing paral-
lel algorithms are confined to a main memory environ-
ment. Currently, there is an absence of a solution that
addresses butterfly counting in a hierarchical-memory
context with parallelism. In this work, we bridge this
gap, significantly enhancing the scalability of butterfly
counting and tapping into the full capacity of modern
multi-core processors.

1.2 Our contributions

In this paper, we study I/O-e�cient and parallel but-
terfly counting algorithms on static graphs. Specifically,
we consider the hardware context that embodies 1) a
hierarchical memory configuration, in which the main
memory size satisfies M = o(|E|) and the secondary
memory is arbitrarily large; 2) a shared-memory multi-
core processor, e.g., multi-core CPUs and GPUs.

Our first contribution is the proposal of a new class
of algorithms called the semi-witnessing algorithm, by
observing that it su�ces to see a subgraph of the butter-
fly (e.g., wedge) in the main memory for counting but-
terflies, as opposed to the witnessing algorithm that has
to see the whole butterfly. Based on the semi-witnessing
algorithm, we derive a new I/O lower bound for but-

terfly counting as ⌦(min(|E||V |
p
MB

,
|E|

2

MB)). Note that when
2|E|

|V |
< c3

p
M for a constant c3, in other words, the

density (or average degree) of the graph is su�ciently

small, our result degrades to ⌦(|E|
2

MB) as given in [98].
One may thus argue that our result is impractical, as it
seems that “most” graphs under discussion are sparse
graphs. Nevertheless, there actually exists a large spec-
trum of dense graphs, including but not limited to IoT
(Internet of Things) [40], software function calls [26],
transitive closure graph [31], cryptocurrency graph [93],
and brain neural network [62].

Our second contribution is developing an algorith-
mic framework for doing butterfly counting on the
hierarchical memory, called IOBufs, short for I/O-
e�cient Butterfly Counting at Scale, which is config-
urable to incorporate not only all our newly devel-
oped variants but also existing algorithms including
EMRC and BFC-VP++. We show that IOBufs ulti-
mately arrives at the worst-case optimal I/O complex-

ity of O(min(|E||V |
p
MB

,
|E|

2

MB)) with the adaptive configu-
ration according to graph density. Particularly, IOBufs
can adapt to the main-memory size M . In fact, when M

is su�ciently large to accommodate all data required by
the algorithm, a variant of IOBufs becomes BFC-VP++.

Our third contribution is the proposal of a par-
allelization framework PIOBufs in order to support
various hardware configurations. PIOBufs includes
TaskDivider, TaskScheduler and TaskRunner. In the
parallel context, given that each worker may need
to maintain its own state for the task assigned by
TaskScheduler, the algorithm can consume more mem-
ory than a sequential counterpart. As an example,
BFC-VP++ consumes O(|E|+W |V |) space when there
are W workers each corresponding to a working thread.
In a hierarchical-memory environment, the data needs
further partition to accommodate such increased mem-
ory demands. This increases the I/O costs and po-
tentially breaks the I/O optimality. We recognize the
underlying issue with most straightforward methods
(including BFC-VP++) is their reliance on coarse-
grained parallelism. In these methods, the algorithm
tries to parallelize relatively large subtasks produced by
TaskDivider. To address this, we introduce FG, a more
fine-grained solution based on the PIOBufs framework.
Its TaskDivider breaks the subtask into smaller pieces.
However, we are also aware that very fine granularity
can amplify the scheduling overhead, as pointed out in
[60]. As a result, in FG, we strike a balance between I/O
e�ciency and the granularity of parallelism.

Our final contribution involves adapting the FG

method to GPUs, which inherently support a high
degree of parallelism (e.g., encompassing hundreds of
thousands of threads). To fully utilize the processing
potential of GPUs, it is vital to account for hierar-
chical parallelism and memory access patterns. Ob-
serving that only “warps” and “blocks” are suitable
candidates for serving as workers in FG, we propose
two distinct kernels, i.e., FG-BaaW and FG-WaaW. The
FG-BaaW kernel employs a block as its worker (BaaW).
This design choice is made to ensure the e�cient han-
dling of large workloads by harnessing the parallel pro-
cessing capability of numerous threads within a block.
Moreover, strategic optimizations are incorporated to
enhance the memory-access e�ciency associated with
FG-BaaW. On the other hand, the FG-WaaW kernel as-
signs a warp as its worker (WaaW), tailored for small
workloads. The FG-WaaW allows a larger number of
workers to operate in parallel, which may cause a surge
of memory consumption as mentioned earlier. This
leads to the development of a novel butterfly-counting
algorithm grounded in the routine of “merge-sort”. This
method negates the necessity of extra memory required
by the hashtable, instead harnessing warp-level primi-
tives for e�ciently counting wedges. By adaptively se-
lecting between FG-BaaW and FG-WaaW, our proposed

4 Zhibin Wang et al.

algorithm outperforms the state-of-the-art G-BFC [86]
by a factor of 30⇥.

1.3 Roadmap

The rest of the paper is organized as follows. Section 2
reviews the related works. Preliminary is presented in
Section 3. Our primary focus is on handling the large-
scale graphs in the hierarchical-memory setting. Ex-
isting hierarchical-memory solutions are given in Sec-
tion 4, in which we revisit the I/O complexity of EMRC.
Observing that existing solutions su↵er from high I/O
costs, we establish a new, more e�cient lower bound
anchored in the principle of semi-witnessing algorithms
in Section 5. Based on the semi-witnessing algorithm,
we develop two variants of IOBufs in Section 6 in or-
der to approach the I/O lower bound. After achieving
the goal of minimizing I/O costs, we focused on boost-
ing performance by parallelizing the algorithm in Sec-
tion 7. Our studies on multi-core CPUs highlight the
importance of a “fine-grained” solution (Section 7.2)
that allows for massive parallelism without compro-
mising the e�ciency of the algorithm regarding I/Os.
Building on this “fine-grained” solution, we have de-
veloped algorithms to e↵ectively utilize GPU technol-
ogy for processing large-scale butterfly counting tasks
in Section 8. Section 9 sets the experimental config-
urations, while Section 10 and Section 11 report the
experimental results on CPUs and GPUs, respectively.
Finally, Section 13 concludes the paper.

2 Related Work

2.1 Motif counting and subgraph matching

Motifs are small subgraphs in the data graph, and thus
existing approaches for subgraph matching can be uti-
lized for motif counting. There are two mainstream sub-
graph matching approaches: backtracking-based [7,21,
6] and join-based [87,36,5,37]. These approaches were
mainly developed for matching/enumerating subgraphs
in general, and might not be the most suitable for but-
terfly counting. Recent literature [91,50,58,12] consid-
ered counting graphlets, i.e., all motifs up to k ver-
tices, while butterfly counting is trivially a part of 4-
vertex graphlet counting. Notice, that the time com-
plexity of 4-vertex graphlet counting is dominated by
4-clique (a complete graph with 4 vertices), making it
sub-optimal for butterfly counting. Nevertheless, there
are several works dedicated to counting small motifs,
which explicitly develop algorithms tailored for each

type of motif, including the butterfly. For instance, in-
stead of setting vertex priority to avoid duplication [78],
Pinar et al. [58] incorporate a graph orientation opti-
mization that removes half of the edges by orienting
edges in a degeneracy order. To prevent the omission of
potential butterflies, they enumerate both out-wedges
and inout-wedges, forming all possible acyclic orienta-
tions of a butterfly by two kinds of wedges. Recently,
GraphSet [68] further optimizes graph mining through
equivalent set transformation, which aims to eliminate
most control flow and reduce computation overhead. As
triangle and butterfly are the two most widely-studied
motifs, we will next focus on reviewing the works that
were explicitly developed for counting/listing the two
motifs in massive graphs.

2.2 Massive triangle counting and listing

With graph data distributed into di↵erent machines,
[22] was developed by synchronizing the intermediate
states to list the triangles. The algorithm of [57] par-
titioned the graphs with replication in order to avoid
communication. Modern hardware is also leveraged for
counting triangles. The results of triangle counting
in [56,29,30] have demonstrated the great potential of
GPUs. With multiple load-balancing techniques, a re-
cent work of [56] managed to scale the task to as many
as 1024 GPU cards. Huang et al. considered triangle
counting on FPGAs in [30] for better energy e�ciency.
In [88], the authors accelerated the intersection opera-
tion for triangle counting using both CPUs and GPUs.
In the hierarchical-memory setting, [55,27] proposed
I/O-e�cient algorithms for triangle counting by using
disk as the secondary memory.

2.3 Butterfly counting

Apart from the works introduced in Section 1,
ParButterfly [67] has been developed for butterfly count-
ing with four variants called hashing, histogram, sort-
ing, and batching, which mainly focus on paralleliz-
ing the most critical operation – wedge aggregating.
As pointed out by [67], the most-optimized batch-
ing variant of ParButterfly is actually the parallel
BFC-VP++ [78] algorithm, and thus we do not fur-
ther discuss it in the paper. As the graph data becomes
massive, researchers have studied to approximate the
number of butterflies through sampling. For instance,
[65] considered vertex-, edge- and wedge-sampling al-
gorithms, as well as the edge sparsification technique
to estimate the number of butterflies. It is interest-
ing to compare the performance of the SOTA approx-

Parallelization of Butterfly Counting on Hierarchical Memory 5

imate algorithm with that of our IOBufs. On the same
dataset Journal (Table 5), the authors reported in Fig-
ure 6(b) of [65] around 8s run time using 25%|E| spar-
sification (� 25%|E| memory) to obtain a result with
99.9% accuracy. In comparison, IOBufs achieves better
performance (5.7s in Figure 10) using 25%|E| mem-
ory yet obtains the exact result. Note that our tech-
niques are orthogonal to the approximate algorithm,
given that IOBufs can be adopted on the graph that
is still too large to fit in the main memory even after
being sparsified. In the streaming setting, the FLEET
algorithm [66] was proposed, which combines edge sam-
pling, edge sparsification, and adaptive random sam-
pling to estimate the number of butterflies in both
infinite and windowed streams. Furthermore, [96,94]
considered counting butterflies on uncertain graphs, in
which each edge has a probability of being present. Re-
cently, G-BFC [86] further accelerated butterfly count-
ing via GPUs.

Optimization on bipartite graphs. Butterfly count-
ing is particularly prevalent in bipartite graphs, such
as buyer-product networks [95,100]. Unlike unipartite
graphs where triangles are common, in bipartite graphs,
butterflies are the primary patterns of interest since
there are no triangles. Consequently, butterflies in bi-
partite graphs are analogous to triangles in unipartite
graphs. Researchers also try to optimize the butterfly
counting based on the nature of the bipartite graph.
[65] chooses the vertex side with the smaller complexity
to count the butterfly. Recently, [90] proposes one-side
sampling, a method capitalizing on the observation that
the leaf vertices of a wedge in a bipartite graph belong
to the same partition. Again, our work is orthogonal
to these optimizations and can incorporate them when
dealing with bipartite input graphs.

2.4 Graph processing systems

Researchers have developed flexible graph processing
systems to simplify the implementation of intricate
graph algorithms. These systems frequently embrace
a high-level programming model, notably the vertex-
centric model and its variants [49,69,20]. Moreover, ad-
vancements have been made to adapt these systems for
hierarchical memory architectures [35,64,63,99,72,73]
and GPU utilization [83,32,54,85,59,23,29], showcas-
ing their adaptability across diverse computing envi-
ronments. These graph processing systems are predom-
inantly tailored for graph algorithms, where each vertex
maintains a state of constant space and its computation
is bound to immediate neighbors. In contrast, butterfly
counting demands that each vertex records the wedge

count, resulting in O(|V |
2) (|V | is the number of ver-

tices in the graph) space requirements and necessitat-
ing access to 2-hop neighbors. This divergence makes
generic graph processing systems ine�cient for butter-
fly counting tasks and thus motivates our development
of IOBufs and its parallelization.

We will show in Section 7.1 that the straightforward
implementation of butterfly counting using the high-
level programming model in graph processing systems
actually mirrors the alternative BSP-S and BSP-SN so-
lutions, which are less e�cient compared to our FG.

Regarding the utilization of hierarchical memory,
X-Stream [64] streams the edges from disk to mem-
ory (a.k.a. semi-streaming), while GridGraph [99] par-
titions the graph into small subgraphs to fit into the
memory. These ideas also inspire the design of IOBufs,
which partitions the graph into subgraphs to fit into
the memory and streaming loads the edges from disk
to memory to reduce space usage. However, IOBufs

further partitions the graph with more considerations
on wedges in addition to solely on edges considered
in GridGraph. In addition to the concept of semi-
streaming, IOBufs also needs to enforce proper loading
sequence of edges in the streaming process for e�cient
wedge enumeration.

When it comes to GPU optimization, techniques for
coalesced memory access [85,32,54,83], shared memory
utilization [56,29,44,43], and subwarp parallelism [59,
23] are widely used. Existing systems leverage coalesced
memory access primarily to optimize direct neighbor
access. In contrast, IOBufs must consider 2-hop neigh-
bor access, necessitating more complex optimization
strategies. Similarly, while shared memory in these sys-
tems is typically allocated for managing simple vertex
states such as integers [43], IOBufs requires a nuanced
approach to e�ciently handle wedge count mainte-
nance, highlighting its unique optimization challenges.

3 Background

3.1 Notations

In this paper, we consider an unlabelled, undirected
simple graph2

G(VG, EG), where VG and EG ✓ VG ⇥

VG denote the vertex and edge set, respectively. An
undirected edge between two vertices u and v is denoted
as (u, v), or equivalently (v, u). We let NG(u) (resp.
dG(u) = |NG(u)|) denote the neighbors (resp. degree)
of vertex u in G, i.e., NG(u) = {v|(u, v) 2 EG}. We also
use dG to denote the average degree of the graph G,

2 Note that our techniques apply seamlessly to a bipartite
graph.

6 Zhibin Wang et al.

Table 1: Frequently used notations.

Notation Definition
G(V,E), G(VG, EG) graph with V (VG) and E (EG)
N(u), NG(u) neighbors of u
d(u), dG(u) degree of u
d, dG average degree of G
(u, v, w) a wedge consists of u, v, w
(u, v, w, x) a butterfly consists of u, v, w, x

�,�G (⇤,⇤G)
the number of butterflies (wedges) of
G

H a set for maintaining wedge count
M the size of the main memory
B the size of a block of data

p, q
the partition numbers of graph data
and fine-grained parallelism

c1, c2, c3

constant values in complexity func-
tions determined by the memory in
bytes taken by an edge/wedge

i.e., dG = 1

|VG|

P
u2VG

d(u) = 2|EG|

|VG|
. A graph g(Vg, Eg)

is called a subgraph of G, denoted as g ✓ G, if Vg ✓ VG

and Eg ✓ EG.

Given four vertices u, v, w, x 2 V , a butterfly
(u, v, w, x) is a 4 cycle formed by edges (u, v), (v, w),
(w, x), and (x, u). A wedge (u, v, w) is formed by the
two edges of (u, v) and (v, w), in which v is called the
center vertex and u, w are called the leaf vertices. Let
�G and ⇤G be the number of butterflies and wedges
in G, respectively. Besides, we denote H{P ! N} for
P ✓ VG ⇥ VG as a set of key-value pairs for maintain-
ing the wedge counting, where the key is a vertex pair
(u, w) and the corresponding value H(u, w) is a natural
number. For simplicity, we will omit the subscript of G

in the above notations when G is clear in the context.
We summarize frequently used notations in Table 1.

3.2 Butterfly counting.

Butterfly counting aims to compute the number of but-
terflies in a given graph. Note that each butterfly in-
stance (u, v, w, x) can appear 8 times in a graph due
to automorphism. We follow [78] to deduplicate by us-
ing vertex priority. In this paper, we will not dive into
the technique, and refer interested readers to [78] for
further details.

Algorithm 1 In-memory butterfly counting framework

Input: graph G

Output: number of butterflies �

1: Initialize (0 for each entry) the hashtable H{V ⇥V ! N}

2: for each wedge (u, v, w) in G do

3: � �+H(u,w)
4: H(u,w) H(u,w) + 1

Observe that a butterfly (u, v, w, x) is formed by
two wedges (u, v, w) and (u, x, w). Thus, it is a com-
mon practice to count wedges as a preliminary step in
butterfly counting. Specifically, if there exist k wedges
between vertices u and w, as {(u, v1, w), . . . , (u, vk, w)},

a total number of k(k�1)

2
butterflies can be formed by

combining any pair of wedges. Obviously, it su�ces to
maintain the number of wedges between all pairs of
vertices (u, w) 2 (V ⇥ V) for counting butterflies. In
the following, we often write wedges, short for the num-
ber of wedges. Consequently, a general framework of in-
memory butterfly counting is established, as presented
in Algorithm 1, showing the general procedure of in-
memory butterfly counting. For each wedge (u, v, w)
computed over the graph (line 2), the number of the
entry (u, w) in H will be added by 1 (line 4). Note that
a small trick in line 3 updates the current butterfly
count � by adding the current value of H(u, w). This
actually leverages the sum of an arithmetic sequence,
namely k(k�1)

2
=

Pk�1

i=0
i. Taking the vertex pair (v1, v2)

in Figure 1 as an example, we have H(v1, v2) = 2 mean-
ing that there are two wedges existing between v1 and
v2, and one butterfly (v1, v3, v2, v5) is formed accord-
ingly.

3.3 GPU architecture

The massive parallelism and high-bandwidth memory
capabilities of GPU make it the ideal hardware for ac-
celerating butterfly counting. To fully exploit the po-
tential of GPU, it is crucial to leverage the hierarchical
parallelism and the memory configuration for program-
ming GPU (more specifically, CUDA [2]) kernels, as
depicted in Figure 2. We briefly introduce the architec-
ture in the following.

Grid

Global memory

…

Block 1

…

Warp 1

…

Warp 32

Shared memory

…

Block 108

…

Warp 1

…

Warp 1

Thread 1

Register

…

Fig. 2: Hierarchical parallelism and the corresponding
memory configuration on GPUs.

Thread. The smallest unit of execution, a thread, rep-
resents the lowest level of parallelism. A GPU core ex-

Parallelization of Butterfly Counting on Hierarchical Memory 7

ecutes each thread, which has access to its registers for
ongoing data processing.

Block. A block, or a thread block, consists of a group
of threads that are assigned to a Stream Multiprocessor
(SM) for execution. Each SM is equipped with shared
memory, enabling all threads within the block to cache
data for e�cient data interchange. A synchronization
primitive named syncthreads() allows explicit syn-
chronization amongst the threads in a block. It is also
crucial to mention Warp in the hierarchy, which is a
group of typically 32 threads in a thread block that
simultaneously execute the same instruction following
a Single Instruction Multiple Threads (SIMT) pattern,
and synchronization happens implicitly. Despite having
no physical memory configuration, GPUs provide high-
performance warp-level primitives for data exchange
among threads within a warp.

Grid. A grid represents the highest level of parallelism.
It is a collection of blocks working collectively to pro-
cess a larger workload, harnessing the complete com-
putational power of a GPU device. In our hierarchi-
cal memory model, the global memory allocated to all
threads in a grid can act as the primary memory, while
the CPU memory can function as secondary memory
to handle overflowed data.

4 Butterfly Counting on Hierarchical Memory

As the graph becomes large, people have studied but-
terfly counting on the hierarchical memory, in which
the main memory has a small capacity of M but is fast
to access, while the secondary memory has a large ca-
pacity but is relatively slower. As a common practice
to compute the I/O cost, we consider a block of size
B as the unit data exchanged between the main and
secondary memory.

!!

!"

Main
memory

(a) Graph partition (b) IOBufs-naïve

!#
v1

v5

v2
v3

v4

v1

v5

v2

v3

v1

v2
v3

Secondary memory

!!, !!

…

v$v"
12v#
……v%

!# !"

v1 v2v3

v1 v2v4

v1 v5v2
…

Wedges

Subgraphs
Hashtable

v1 v3v2
Useless for !#×!":

∈ !#×!!

!!, !"

!!, !#

Fig. 3: The execution of IOBufs-Näıve on hierarchical
memory.

4.1 Existing solutions

Semi-streaming [35,64,63,99] is a popular technique
for processing large graphs on hierarchical memory. It
maintains partial data (e.g., vertex states) in the mem-
ory and streaming loads the edges from the secondary
memory. Regarding butterfly counting, BFC-EM [78]
follows the semi-streaming model, in which it stream-
ing loads the edges and conducts wedge computing se-
quentially for loaded edges. The wedges will be con-
stantly spilled to the secondary memory to avoid over-
flowing the main memory. BFC-EM can do butterfly
counting with constant space complexity, while it ren-
ders an I/O cost insensitive to M . We show in the ex-
periment (Section 9) that BFC-EM can barely benefit
from more memory. Alternatively, the authors devel-
oped EMRC and proved its “I/O optimality” in [98].
Following EMRC to partition the graph, we propose
the algorithmic framework of IOBufs, which provides
an interface that can be further implemented to realize
di↵erent variants of the algorithm. Note that the frame-
work also incorporates EMRC, and one of the variants
actually becomes the in-memory BFC-VP++ [78] if the
main memory is su�ciently large to accommodate the
edges and wedges.

4.2 The partition-based framework

Graph partition. We first randomly partition the ver-
tices V into p disjoint subsets satisfying

V =
p[

i=1

Vi ,with 81  i 6= j  p, Vi \ Vj = ;,

and then construct each partitioned subgraph as
Gi(Vi, Ei), where Ei = {(u, v)| (u 2 Vi _ v 2 Vi) ^

(u, v) 2 E}. Note that alternative partition strategies
may be considered, which should have little impact on
our algorithm as long as it produces a balanced number
of edges across partitions, as will be empirically stud-
ied in Section 10.6. Given that we must fit the largest
partition in the main memory, the imbalanced parti-
tion may result in a larger p, consequently increasing
the time and I/O complexity of the algorithm.

The framework. Algorithm 2 demonstrates the al-
gorithmic framework of IOBufs. Lines 1-2 first parti-
tion the graph into p parts, which can actually be pre-
processed as will be discussed. For every two parti-
tioned subgraphs (lines 3-4), it launches the interface
IOBufs-interface() in line 4 to count the butterflies be-
tween two subgraphs. The interface is the key to con-
figuring di↵erent variants of the algorithm.

8 Zhibin Wang et al.

Algorithm 2 The algorithmic framework of IOBufs

Input: graph G

Output: number of butterflies �

1: Configure the partition number p

2: Partition G into p parts, as {G1, . . . ,Gp}

3: for i 2 {1, ..., p} do

4: for j 2 {1, ..., p} do

5: � �+ IOBufs-interface(Gi,Gj)

Algorithm 3 IOBufs-Näıve (a.k.a. EMRC)

1: function IOBufs-Näıve(Gi,Gj)
2: Load Gi,Gj and initialize H{Vi⇥Vj ! N} in the main

memory
3: for wedges (u, v, w) satisfying u 2 Vi, v 2 V,w 2 Vj

do

4: � �+H(u,w)
5: H(u,w) H(u,w) + 1

6: return �

A näıve variant of IOBufs is given with the cor-
responding implementation of IOBufs-interface in Al-
gorithm 3. This algorithm is actually EMRC, but the
partition number p may be configured di↵erently (Sec-
tion 4.3). The algorithm has the same skeleton as Algo-
rithm 1, but places a constraint in line 3 to guarantee
each butterfly to be counted exactly once.

Example 1 Figure 3(a) demonstrates partitioning the
graph in Figure 1 into three parts, and Figure 3(b) gives
a running example of IOBufs-Näıve. In the two parti-
tioned subgraphs G1 and G2, we can locate two wedges
between (v1, v2), and thus one butterfly is recorded. The
constraint of line 3 ensures the correctness of the algo-
rithm. Consider the wedge (v1, v2, v3). If without the
constraint, it will be counted multiple times; otherwise,
it will only be counted while processing (G1, G3).

The authors of [98] derived the I/O complexity of

EMRC as O(|E|
2

MB), and proved that EMRC achieves the
optimal I/O. However, we observe that the authors
overlooked the space cost of wedges, which increases
the I/O cost of EMRC. In the following, we rectify the
result after consulting with the authors.

4.3 Revisit the I/O complexity of EMRC

According to the random partition strategy, each parti-
tion has O(|E|

p) edges by expectation with high possibil-
ity [27]. Moreover, the set H now only needs to maintain
the wedges of vertex pair (u, w) 2 Vi ⇥ Vj each time.
As both Vi and Vj are a fraction of 1/p of the vertices,

H consumes O(|V |
2

p2) space, which is unfortunately ig-
nored in [98]. As a result, the space complexity becomes

O(|E|

p + |V |
2

p2) in Algorithm 3.

We next analyze the actual I/O complexity. Accord-
ing to [98], the I/O cost of Algorithm 3 is dominated by
line 4, which continuously loads the subgraphs from the
secondary memory. By summing all pairs of subgraphs,
we obtain
pX

i=1

pX

j=1

|Ei| + |Ej |

B
= O(

p|E|

B
). (1)

Note that the required data of the algorithm must
fit in the main memory. Given the space complexity of
Algorithm 3, we have

M � c1

|E|

p
+ c2

|V |
2

p2
)

Mp
2

� c1|E|p � c2|V |
2

� 0,

(2)

where c1 and c2 are constant values determined by the
size (in bytes) of an edge and a wedge in the main
memory.

By quadratic formula, we further have

p �
c1|E| +

p
(c1|E|)2 + 4c2M |V |2

2M
. (3)

Let p = d
2c1|E|+

p
4c2M |V |2

2M e = d
c1|E|

M +
p
c2|V |
p
M

e, the
main memory is su�cient to maintain both edges
and wedges. Together with Equation 1, we can derive
the I/O complexity of IOBufs-Näıve (and EMRC) as

O(|E||V |
p
MB

+ |E|
2

MB).
Accordingly, we revisit the time complexity. The

algorithm must enumerate each wedge exactly once,
which costs O(⇤); the cost of processing the edges of the
graph is O(p|E|) according to Equation 1. Putting them

together, we have the time complexity of O(⇤+ |E||V |
p
M

+
|E|

2

M). Surprisingly, given that ⇤ = O(|E|
1.5) [13] and

M = o(|E|), this is tighter than O(|E|
2

p
M

) as given in the

paper [98].

Remark 1 From the above analysis, we summarize the
requirement and configuration that should be applied
through this paper:

– Requirement: For an algorithm to work on the hi-
erarchical memory, the main memory must have suf-
ficient capacity to accommodate the data required
by the algorithm.

– Configuration: In practice, we can configure the
minimum possible p such that the above space re-
quirement is satisfied. As in Equation 3, once the
main memory size and the graph statistics are given,
p can be configured prior to running the algorithm,
and thus we can preprocess the partitioning of the
graph.

Parallelization of Butterfly Counting on Hierarchical Memory 9

Particularly for EMRC, if we configure p = d
c1|E|

M e

according to the paper [98], it is unable to meet the
above memory requirement for processing large graphs.
If we configure p as Equation 3, the I/O cost is larger
than the optimal bound (will be derived in Section 5).
In other words, we conclude that the algorithm of
EMRC is not I/O-optimal.

5 I/O Lower Bound of Butterfly Counting

Zhu et al. [98] derived ⌦(|E|
2

MB) as the I/O lower bound
of butterfly counting based on the witnessing algorithm
[28]. The witnessing algorithm requires the algorithm
to see all butterflies in the main memory, which is too
strict for butterfly counting. We show that it su�ces to
witness a subgraph of the butterfly (e.g., wedge), if the
task is to count rather than enumerate butterflies. In
response to this, we propose a new class of algorithms
called semi-witnessing algorithm and prove that any
semi-witnessing algorithm for butterfly counting must

incur ⌦(min(|E|
2

MB ,
|E||V |
p
MB

)) I/Os, which is lower than ex-
isting results.

5.1 The semi-witnessing algorithm

Note that Algorithm 1 leverages a fact that a but-
terfly (u, v, w, x) can be decomposed into two wedges
by a pair of vertices (u, w). To correctly count butter-
flies, the algorithm only needs to record the number of
wedges between the leaves u and w without materializ-
ing the center vertices. The center vertices in this case
are nonessential for the counting. Without the center
vertices (and the associated edges), the algorithm can-
not completely witness a butterfly. We hence believe
that the I/O bound [98] derived from the witnessing
algorithm may leave room for improvement.

Although Algorithm 1 does not witness butterflies,
it does witness all wedges as shown in line 2. Inspired
by this, we propose a new class of algorithms called
semi-witnessing algorithm for counting a given motif,
by allowing the algorithm to witness only a subgraph
instead of the whole motif. Formally,

Definition 1 Given a graph G, a small motif g, and
a subgraph g

0
✓ g, we denote Ag0 as a semi-witnessing

algorithm regarding g
0 for counting the occurrences of

g in G subject to

1. Ag0 must witness all occurrences of g
0 in the main

memory;
2. there exists no g

00 where g
0
⇢ g

00 such that Ag0 wit-
nesses all occurrences of g

00.

(a) A!" (c) A#$

Number of
wedges

(b) A%&

Number of
3-hop paths

Fig. 4: Three types of semi-witnessing algorithms for
butterfly counting, in which the vertices/edges outlined
with dotted lines are nonessential.

Obviously, Ag is a witnessing algorithm.

As shown in Figure 4, we can develop three types
of semi-witnessing algorithms for butterfly counting,
namely ABF , A3P , and AWG, where the subgraphs are
butterfly, 3-hop path (a path connected by 3 consec-
utive paths), and wedge, respectively. Note that semi-
witnessing algorithms regarding an edge and two paral-
lel edges, denoted respectively as AE and APE , are not
listed in Figure 4. The following lemma rules out their
existence.

Lemma 1 There exists neither APE nor AE for but-
terfly counting.

Proof Consider a butterfly (u, v, w, x). If there is an
APE algorithm, after witnessing the parallel edges, such
as (u, v) and (w, x) without loss of generality (w.l.g.),
it is essential to also check the existence of the edges
(u, x) and (v, w) for the butterfly. In this case, the whole
butterfly has already been witnessed. If there is an AE

algorithm, after witnessing an edge, such as (u, v) w.l.g.,
it is infeasible to simultaneously witness either (u, x) or
(v, w), otherwise, it is at least an AWG algorithm by
Definition 1. Moreover, co-witnessing the edge (w, x)
parallel to (u, v) ends up with an infeasible APE algo-
rithm.

Our next move is to provide the I/O lower bound for
the three types of semi-witnessing algorithms. Prior to
that, we introduce some useful notations. Given E ✓ E

and u, v 2 V , we denote Ev as the edges in E that must
contain v, and E(u, v) as an indicator that returns 1
when the edge (u, v) 2 E and 0 otherwise. Moreover, the
following I/O inequality obviously holds for any motif:

#I/Os �
the motif

maximum of # the motif counted per I/O
.

(4)

5.2 The I/O lower bound of ABF

This is the case where Zhu et al. [98] derived the bound

of ⌦(|E|
2

MB). While finding their proof complicated to

10 Zhibin Wang et al.

follow, we propose a more succinct version in this paper.
We first have

Lemma 2 Given any E 2 E, the number of butterflies
�E that can be witnessed in E satisfies

�E  |E|
2
.

Proof

�E =
X

u2V

X

v2V \{u}

X

w2V \{u,v}

X

x2V \{u,v,w}

E(u, v) · E(v, w) · E(w, x) · E(x, u)



X

(u,v)2E

X

(w,x)2E

E(v, w) · E(x, u)  |E|
2
.

Theorem 1 No ABF algorithm for butterfly counting

can guarantee o(|E|
2

MB) I/Os.

Proof The main memory can hold at most O(M) edges.
After conducting one I/O, O(B) more edges will be
loaded into the main memory, making O(M +B) edges
in total. According to Lemma 2, there are at most
O((M + B)2) butterflies witnessed by ABF . Note that
we cannot guarantee that the butterflies are all newly
discovered while conducting each I/O. After conduct-
ing su�cient numbers of I/Os, some butterflies may be
counted more than once. Therefore, if we immediately
utilize Equation 4 based on the result of a single I/O,
we will obtain an I/O lower bound that is too loose to
be practical. Inspired by [28], we can conduct s con-
secutive I/Os before launching one butterfly counting
to mitigate the impact of duplicate counting. By doing
so, there are at most O((M + sB)2) butterflies wit-

nessed by ABF , i.e., O((M+sB)
2

s) per I/O by average,
which is O(MB) by setting s = O(MB). Besides, the
number of butterflies in a graph can arrive at ⇥(|E|

2).
Putting them into Equation 4, we can derive the I/O

lower bound of ⌦(|E|
2

MB) for any ABF , which is exactly
the bound given in [98].

5.3 The I/O lower bound of AWG

Recall that we use H as a set of key-value pairs to record
the wedge count, where the keys are the leaves of the
wedge. Henceforth, we will use H ✓ V ⇥ V to indicate
the (number of) wedges materialized in H. We further
say a wedge (u, v, w) is subject to H, if (u, w) 2 H. We
have

Lemma 3 For any graph G, given E ✓ E and H ✓

V ⇥V , the number of new wedges subject to H that can
be witnessed by E, denoted as ⇤E [H], satisfies

⇤E [H]  2
p

|H||E|.

Proof

⇤E [H] =
X

(u,w)2H

number of new wedges witnessed by Ez }| {X

v2V

Ev(u, v) · Ev(v, w)

=
X

v2V

0

@
X

(u,w)2H

Ev(u, v) · Ev(v, w)

1

A .

Given any v 2 V , on the one hand, they form at most
|Ev|

2 new wedges; on the other hand, the wedges subject
to H are bounded by |H|. Consequently,

⇤E [H] 

X

v2V

min(|H|, |Ev|
2) 

X

v2V

p
|H| · |Ev|

=
p

|H| ·

X

v2V

|Ev| = 2
p

|H||E|.

(5)

Note that an AWG algorithm only needs to deal
with wedges and edges, as the butterflies can be im-
mediately counted once the number of wedges between
all pairs of vertices has been registered. It is then crit-
ical for an AWG to consider how to exploit the main
and secondary memory to handle wedges and edges, re-
spectively. To ease the discussion, we start with a sim-
ple case called wedge-only. In this case, the algorithm
loads edges in a streaming manner to count wedges, and
the main memory only maintains wedges among vertex
pairs. The wedges, after being used to count butterflies,
do not need to be spilled to the secondary memory. For
further reference, the IOBufs-wedge algorithm in Sec-
tion 6 is one such algorithm.

Lemma 4 In the wedge-only case, no AWG algorithm
for butterfly counting can guarantee o(|E||V |

p
MB

) I/Os.

Proof The wedges are maintained in the main memory
with |H| = O(M), and we load O(B) edges per I/O to
update the wedge counting. According to Lemma 3, at
most O(

p
MB) new wedges will be witnessed by con-

ducting one I/O. Given that the total number of wedges
can be ⇥(|E||V |), a direct application of Equation 4

gives an I/O lower bound of ⌦(|E||V |
p
MB

).

Obviously, there are some constraints in the wedge-
only case, while it paves the way for discussing the gen-
eral wedge-edge-shared case, in which the main memory
can simultaneously materialize both wedges and edges,
and the wedges can be spilled to the secondary memory
for further use. As a matter of fact, “wedge-only” is a
special case of wedge-edge-shared. We conclude:

Theorem 2 No AWG algorithm for butterfly counting
can guarantee o(|E||V |

p
MB

) I/Os.

Parallelization of Butterfly Counting on Hierarchical Memory 11

Proof In the wedge-edge-shared case, the main memory
should be divided to store wedges and edges. There-
fore, both edges and wedges take up O(M) space. Con-
sidering performing an I/O to load O(B) edges, we
have |E| = O(M + B) and |H| = O(M). According
to Lemma 3, O(

p
M(M + B)) new wedges can be wit-

nessed. Similarly, if we conduct an I/O to load O(B)
more wedges, O(

p
M + BM) new wedges can be wit-

nessed. Directly applying Equation 4 by only consider-
ing one I/O leads to a loose bound. Hence, we conduct
s = s1 + s2 consecutive I/Os as Theorem 1, where s1

I/Os are for loading edges and s2 I/Os are for loading
wedges. As a result, a total number of O(M + s1B)
edges and O(M + s2B) wedges are now in the main
memory, which gives the newly witnessed wedges as at
most

O((M + s1B)
p

M + s2B) = O((M + sB)
p

M + sB).

The number of wedges that are witnessed on average
along the process is O(

p
MB) by setting s = O(MB).

Considering that the number of wedges can be as many
as ⇥(|E||V |), we derive the I/O bound of AWG as

⌦(|E||V |
p
MB

) in the general wedge-edge-shared case.

5.4 The I/O lower bound of A3P

Theorem 3 No A3P algorithm for butterfly counting
can guarantee o(|E||V |

p
MB

) I/Os.

Proof A3P requires witnessing the 3-hop paths between
all pairs of vertices. There are two ways to do so:

– Directly computing all the 3-hop paths in the
main memory. The case is not viable based on
Definition 1. Note that if all 3-hop paths have been
witnessed, together with the fact that the last edge
must be checked to close a butterfly, the algorithm
already witnesses all butterflies.

– Dividing a 3-hop path into a wedge concate-
nating with an edge. The I/O cost of such an
algorithm is at least that of computing the wedges,
and thus it cannot render I/Os in o(|E||V |

p
MB

) by The-
orem 2.

According to the above analysis, the theorem holds.

5.5 Final result and discussions

Theorem 4 No semi-witnessing algorithm for butter-

fly counting can guarantee o(min(|E|
2

MB ,
|E||V |
p
MB

)) I/Os.

Proof Recall from the discussions in Lemma 1 and Fig-
ure 4 that any semi-witnessing algorithm for butter-
fly counting must belong to either ABF , A3P or AWG.
Thus, this theorem holds by summarizing Theorem 1,
Theorem 2, and Theorem 3.

The result in Theorem 4 clearly guides us to design
the algorithm according to the density of the graph.
Based on the size of d and

p
M , an ABF algorithm is

favored if the graph is su�ciently sparse, while an AWG

algorithm is a better choice if the graph is dense. In Sec-
tion 6, we will develop two variants of the algorithm and
make them adaptive to the graph density accordingly.

6 The I/O-optimal Algorithm

Based on Algorithm 2, we design our IOBufs that can
achieve the I/O lower bound in Theorem 4. We first
point out the key observation to lower I/O cost for but-
terfly counting. We then optimize Algorithm 3 based on
the observation by proposing two variants of the algo-
rithm, namely IOBufs-edge and IOBufs-wedge. We show
that IOBufs-edge belongs to ABF and IOBufs-wedge be-
longs to AWG (Definition 1), and they can also ap-
proach the I/O lower bound of Theorem 1 and Theo-
rem 2, respectively. IOBufs can hence adaptively select
IOBufs-edge and IOBufs-wedge based on whether the
graph is sparse or dense. Finally, we claim that IOBufs

is I/O-optimal according to Theorem 4.

6.1 The key observation

As we have discussed in Section 4.3, the main reason
that Algorithm 3 cannot achieve I/O optimality is that
it must maintain both edges and wedges in the main
memory, which, however, is not a necessity according
to a key observation:

The number of butterflies can be correctly derived
from either edges or wedges individually.

If we have only edges in the main memory, we can
directly try all combinations of 4 vertices and check
whether they can form a butterfly. Obviously, such a
näıve approach cannot work in practice due to the
large time complexity. On the other hand, if we already
get the number of wedges between each pair of ver-
tices, the number of butterflies can be computed as we
have shown in Algorithm 1. However, if the wedges are
randomly computed with edges kept in the secondary
memory, the discovery of each wedge may involve I/O
cost for two edges, which will lead to intolerable I/O

12 Zhibin Wang et al.

cost. The above observation does inspire us to con-
sider keeping only edges or wedges in the main memory,
but it is non-trivial to develop such an algorithm with
proper time and I/O complexity.

The main idea is that we can randomly access
the in-memory data, while sequentially processing the
other data in a streaming manner, which is also called
semi-streaming [52]. However, semi-streaming in gen-
eral graph processing systems [35,64,63,99,72,73] pri-
marily focuses on simple vertex states (e.g., integer)
and edges, while in butterfly counting, the main re-
search subject shifts to edges and wedges. In general
graph processing systems, the space cost of edges is
much more than vertex states, which makes these sys-
tems focus on optimizing the storage and memory ac-
cess of edges. In contrast, regarding butterfly counting,
the importance of edges and wedges may vary in di↵er-
ent input graphs, this naturally leads to two variants of
the algorithm, namely IOBufs-edge and IOBufs-wedge,
standing for the IOBufs algorithm with only edges and
wedges maintained in the main memory, respectively.

(b) IOBufs-wedge(a) IOBufs-edge

Main
memory

…

Wedges

Hashtable

v!v"
00v#

v!v"
12v#v1

v5

v2
v3

v5
v2
v2

2-hop neighbors

v4

Reuse the space
of hashtable

Main
memory

v!v"
…1v#
……v$

…

Hashtable

%# %"

v#N1(v3) v"N2(v3)

v3

v!N1(v2) v!N1(v2)

Wedges

Dropped edges

v#N1(v4) ∅N2(v4)
Streaming load

next edges

%# %"
Subgraphs

Subgraphs

Fig. 5: The execution of IOBufs-edge and IOBufs-wedge
on hierarchical memory.

6.2 The IOBufs-edge variant

Algorithm 4 presents the IOBufs-edge implementation.
Apart from IOBufs-Näıve, IOBufs-edge does not allocate
a set to record the wedge count for all pairs of Vi ⇥

Vj in the first place. Instead, it does so sequentially
for each vertex in Vi (lines 2-3). Note that, after each
vertex u is processed, the number of wedges of {u}⇥Vj

has already contributed to the final result by lines 6-7.
Consequently, the memory can be reused to process the
following vertices.

Example 2 As illustrated in Figure 5(a), after two sub-
graphs G1 and G2 are loaded into the main memory, the
set H{{v} ⇥ V2} will be allocated. H will first record
the wedge count between v1 2 V1 and all vertices in V2.
Once the process of v1 is completed, H will be reused
for v4.

Algorithm 4 IOBufs-edge

1: function IOBufs-edge(Gi,Gj)
2: Load subgraph Gi,Gj into the main memory
3: for u 2 Vi do

4: Initialize H{{u}⇥ Vj ! N} in the main memory
5: for wedges (u, v, w) satisfying v 2 NGi

(u), w 2 Vj

do

6: � �+H(u,w)
7: H(u,w) H(u,w) + 1

8: return �

Witnessing butterflies. We show that IOBufs-edge
actually belongs to ABF . At first sight, as IOBufs-edge
follows the framework of Algorithm 1 to derive butterfly
counting from wedges, it may not witness all butterflies.
Let us take a closer look at Algorithm 4. For any but-
terfly (u, v, w, x), while locating the wedge of (u, v, w)
in line 5, we must have all nonessential vertices v and
x and their associated edges in the main memory due
to line 2. As a result, the butterfly has already been
witnessed in the main memory.

Complexity Analysis. The reuse of memory for
wedges gives the space complexity of IOBufs-edge as
O(|E|

p + |V |

p) = O(|E|

p). According to the space require-

ment of Remark 1, we can get p = O(|E|

M), and by
Equation 1, we can derive the I/O cost of IOBufs-edge

as O(|E|
2

MB). Given that IOBufs-edge belongs to ABF , we
claim its I/O optimality according to Theorem 1. The

time complexity is O(⇤+ |E|
2

M) according to Section 4.3.

6.3 The IOBufs-wedge variant

IOBufs-wedge is given in Algorithm 5 which only main-
tains wedges in the main memory. The algorithm first
initializes a memory space of H(Vi ⇥ Vj) for recording
the wedges between the two partitioned graphs. While
organizing the graph as a sequence of the adjacent lists
of vertices in the secondary memory, the algorithm can
load the data of Ni(v) (NGi(v)\Vi) and Nj(v) sequen-
tially for all v 2 V in a streaming manner (line 4).

Example 3 Figure 5(b) shows the process of
IOBufs-wedge for G1, G2. The set of H{V1 ⇥ V2}

will be allocated in the first place. Then wedges are
counted with edges sequentially loaded into the main
memory. For example, when counting the wedges with
v3 as the center vertex, only edges connecting v3 in the
two subgraphs ((v1, v3) and (v3, v2)) will be loaded.
In this case, a wedge (v1, v3, v2) is counted. As these
edges will not be used in later computation, they can
be dropped to make room for the edges connecting the
next center vertex v4.

Parallelization of Butterfly Counting on Hierarchical Memory 13

Algorithm 5 IOBufs-wedge

1: function IOBufs-wedge(Gi,Gj)
2: Initialize H{Vi ⇥ Vj ! N} in the main memory
3: for v 2 V do

4: LoadNi(v) = NGi
(v)\Vi andNj(v) = NGj

(v)\Vj

5: for wedges (u, v, w) satisfying u 2 Ni(v), w 2

Nj(v) do

6: � �+H(u,w)
7: H(u,w) H(u,w) + 1

8: return �

Witnessing wedges. Obviously, IOBufs-wedge must
witness all wedges. We show how it di↵ers from the
IOBufs-edge variant without witnessing the butterflies.
Consider a butterfly (u, v, w, x). In one iteration that
processes v (line 3), it witnesses all vertices but x; in an-
other iteration that processes x, it may fail to witness v.
Overall, IOBufs-wedge cannot guarantee simultaneously
witnessing all vertices of a butterfly in the main mem-
ory. As a result, IOBufs-wedge belongs to AWG. More
specifically, as it runs by only maintaining the wedges
in the main memory, it is a wedge-only AWG.

Complexity analysis. IOBufs-wedge consumes

O(|V |
2

p2) memory space to maintain H(Vi ⇥ Vj),

which gives p = O(|V |
p
M

) according to Remark 1. By

Equation 1, we have the I/O cost of IOBufs-wedge as

O(|E||V |
p
MB

), which is optimal according to Theorem 2.
Similarly, we can derive the time complexity as
O(⇤ + |E||V |

p
M

).

Table 2: Comparison of IOBufs-edge and IOBufs-wedge.

Variant p Time complexity Space complexity I/O complexity

IOBufs-edge O(|E|
M

) O(⇤+ |E|2
M

) O(|E|
p

) O(|E|2
MB

)

IOBufs-wedge O(|V |p
M

) O(⇤+ |E||V |p
M

) O(|V |2
p2

) O(|E||V |p
MB

)

6.4 The adaptive algorithm

Table 2 quickly compares IOBufs-edge and
IOBufs-wedge. Obviously, we can adaptively choose
between the two variants based on whichever yields
lower I/O cost, as:

c1|E|
2

MB
<

p
c2|E||V |
p

MB
) d(=

2|E|

|V |
) < c3

p

M, (6)

where c3 = 2
p
c2

c1
. In other words, we should use

IOBufs-edge when the graph is su�ciently sparse,
namely d < c3

p
M , and use IOBufs-wedge otherwise.

Therefore, we have IOBufs adaptively configured as:

Algorithm 6 IOBufs, the adaptive variant

1: if d < c3

p
M then

2: apply IOBufs-edge in Algorithm 2
3: else

4: apply IOBufs-wedge in Algorithm 2

Obviously, the I/O complexity of IOBufs is

O(min(|E|
2

MB ,
|E||V |
p
MB

)). According to Theorem 4, we claim

that IOBufs is I/O-optimal. Besides, the time complex-

ity is O(⇤ + min(|E|
2

M ,
|E||V |
p
M

)).

7 Parallelization

After the I/O cost is minimized, the next step is to
parallelize the algorithm to further leverage the mas-
sive parallelism supported by modern hardware. Note
that it is trivial to parallelize IOBufs-wedge: we simply
replace the for loop in line 3 of Algorithm 5 with a par-
for, and all working threads can share a common H. In
the following, we will focus on discussing the non-trivial
parallel techniques for IOBufs-edge.

Let us represent Twc{V ⇥ V } as the process of cal-
culating the wedges between all pairs of vertices, a
core operation in butterfly counting as mentioned be-
fore. In addition, we take into account W workers in
the runtime environment to execute the task. To facil-
itate the discussion of various solutions for paralleliz-
ing IOBufs-edge across varied hardware types, includ-
ing multi-core CPUs and GPUs, we introduce a generic
parallel framework named PIOBufs. The framework can
be adapted to di↵erent scenarios using three critical
interfaces, namely TaskDivider, TaskScheduler, and
TaskRunner.

– TaskDivider handles dividing the main task
(Twc{V ⇥ V }) into subtasks that can be processed
by the workers in parallel. We denote the subtask
as Twc{V1 ⇥ V2} for any non-empty V1 ✓ V and
V2 ✓ V . Given that each worker might require main-
taining memory space for processing the subtask,
it is vital to carefully divide the subtasks and dis-
tribute subtasks among the workers without com-
promising the I/O e�ciency of the algorithm.

– TaskScheduler involves determining the order in
which the subtasks should be executed by the work-
ers. This scheduling should take into account factors
such as the availability of workers and the execution
order of subtasks.

– TaskRunner focuses on how each subtask should be
programmed to run on a worker. The programming
should leverage any device-specific techniques or op-

14 Zhibin Wang et al.

timizations to achieve high performance, such as the
hierarchical architecture of GPUs.

With the uniform framework, we can discuss the key
factors to consider when implementing PIOBufs across
various hardware configurations.

Adapting PIOBufs to sequential I/O-optimal al-
gorithm. When operating with a single worker, the
I/O-optimal algorithm discussed in the previous section
can be seamlessly integrated into PIOBufs by following
implementations:

– TaskDivider: According to Algorithm 2, divide the
task Twc{V ⇥ V } into subtasks of Twc{Vi ⇥ Vj},
with Vi and Vj denoting the vertex sets of the two
partitioned graphs.

– TaskScheduler: Sequentially schedule the subtasks
to the worker.

– TaskRunner: The worker directly calls the
IOBufs-edge (Algorithm 4) to process Twc{Vi ⇥ Vj}

for a pair of partitioned subgraphs (Gi, Gj).

Multi-core CPUs. In the upcoming subsections of
Section 7.1 and Section 7.2, we delve into CPU en-
vironments, where it’s straightforward to assign each
worker to a CPU thread. In this context, the role
of TaskRunner becomes trivial, steering our focus to-
wards TaskDivider and TaskScheduler. A few candi-
date CPU parallelization solutions have been explored,
including Näıve, which is a straightforward extension of
the sequential algorithm of IOBufs; BSP-S, which can
be recognized as an implementation of parallel butterfly
counting upon the graph processing system [35,64,63,
99,72,73,69]; and BSP-SN, which actually represents
existing parallel butterfly counting algorithms [78,67].
Recognizing the constraints of existing methods stem-
ming from their coarse-grained task division, we intro-
duce FG, which features a TaskDivider designed to
dissect the task of butterfly counting into more fine-
grained subtasks. FG lays the groundwork for the e�-
cient parallelization of IOBufs in this paper.

GPUs. In the forthcoming Section 8, building directly
on the TaskDivider and TaskScheduler implementa-
tions from FG, we explore a two-layer parallelism strat-
egy for the TaskRunner within the GPU setting. This
strategy is specifically engineered to capitalize on the
GPU’s massive parallelism, aiming for optimal utiliza-
tion of its hundreds of thousands of working threads to
enhance processing e�ciency.

7.1 CPU parallelization: alternative solutions

We present three alternative parallelization solutions on
a CPU, namely Näıve, BSP-S, and BSP-SN, and ana-

lyze their drawbacks, which motivate us to develop our
“fine-grained” solution.

“Näıve” solution. As depicted in Figure 6(a), a näıve
way to parallelize IOBufs-edge is to allocate individual
threads to handle the subtasks in the I/O-optimal al-
gorithm. We only need to adjust the TaskScheduler as
follows:

– TaskScheduler: Schedule the subtasks in a round-
robin fashion from a thread pool of W workers.

However, Näıve will cause the space complexity to
increase by W times, consequently increasing the I/O
cost. For IOBufs-edge, as the total space cost becomes
O(W ·

|E|

p) and must still be accommodated by the main

memory of size M , we can derive that p = O(W ·
|E|

M)

and the I/O cost as O(W ·
|E|

2

MB).

“BSP” solutions. We next discuss a bulk-
synchronous parallel (BSP) [71] mechanism by
developing an iterative workflow for Algorithm 2,
where each iteration handles a pair of partitioned
subgraphs (Gi, Gj). The parallelization is applied
within each iteration by further dividing the subtask
of Twc{Vi ⇥ Vj}. This is equivalent to conducting
a parfor in line 3 of Algorithm 4 to parallelize the
subtask of Twc{{u} ⇥ Vj} for all u 2 Vi, which is
exactly what BFC-VP++ does. Specifically, “BSP”
implements PIOBufs as:

– TaskDivider: On the basis of Twc{Vi ⇥ Vj} in the
“Näıve” solution, it further divides it into subtasks
of Twc{{u} ⇥ Vj} for all u 2 Vi.

– TaskScheduler: The execution is scheduled itera-
tively. In a certain iteration for processing the par-
titioned subgraphs (Gi, Gj), we adopt the dynamic
scheduling technique proposed in [80] to parallelize
the execution of all Twc{{u} ⇥ Vj}. Specifically, it
arranges all subtasks of Twc{{u} ⇥ Vj} in a concur-
rent queue by the descending order of d(u). With
W workers in the pool, each worker, once idle, will
be scheduled to dequeue the top-ordered subtask
to run. Synchronization is conducted at the end of
each iteration to guarantee that all workers have fin-
ished their tasks and that the new graph data has
supplanted the old data before proceeding to the
subsequent iteration.

– TaskRunner: Each worker simply runs lines 4-7 of
Algorithm 4.

Given how H in line 4 of Algorithm 4 is maintained,
the “BSP” solution has two variants, namely BSP-S
and BSP-SN. As illustrated in Figure 6(b), BSP-S re-
quires that all workers share a common H{Vi ⇥ Vj}.

Parallelization of Butterfly Counting on Hierarchical Memory 15

Main memory

(a) Architecture of Naïve

!! !"Subgraphs

Hashtable

…Thread
pool

Worker 1

ℋ

Worker 2

ℋ

Worker W

ℋ…

Main memory
Subgraphs

Hashtable

…Thread
pool

…

Worker 1

ℋ

!! !"

Worker 2

ℋ

!! !"

Worker W

ℋ

!! !"…

(c) Architecture of BSP-SN, FG

Main memory
!! !"Subgraphs

Hashtable

…Thread
pool

Worker 1

ℋ

Worker 2 Worker W

(b) Architecture of BSP-S

Fig. 6: Solutions of parallelizing IOBufs-edge on a CPU.

In fact, a straightforward implementation3 of butterfly
counting in graph processing systems [35,64,63,99,72,
73,69] is BSP-S: each vertex v 2 V maintains a local
vertex state, i.e, a hashtable H{{v} ⇥ V}, resulting in
an overall hashtable H{V ⇥ V}; then all vertices send
their neighbors to the two-hop neighbors such that the
wedge counts can be updated in the hashtable; note
that the process can be conducted in iterations if V is
partitioned accordingly. However, it’s not hard to see
that the algorithm has now degraded to IOBufs-Näıve
(Algorithm 3), which has large I/O and time complex-
ity. Alternatively, BSP-SN (BSP Shared Nothing) lets
each worker maintain a local H, which is similar to the
idea of ParButterfly [67] with batching wedge aggrega-

tion. We can derive the space cost as O(|E|

p +W |V |

p), and

the I/O cost as O(|E|
2

MB + W |V ||E|

MB). Such I/O cost may
be huge, as it is likely to have W > d when processing
a sparse graph on the modern multi-core CPU.

7.2 The fine-grained solution

We observe that the dilemma of trading o↵ the par-
allelism and the I/O e�ciency of all solutions in Sec-
tion 7.1 lies in the coarse-grained TaskDivider. In other
words, the TaskDivider produces Twc{V1⇥V2} (requir-
ing hashtable H{V1 ⇥ V2}) with some large V1 or V2,
increasing the space complexity. In response, we pro-
pose the “fine-grained” (FG) solution based on BSP-
SN

4. Notice, GridGraph [99] also exploits the fine-
grained partition for edges, while we focus on how to
partition the subtask, in other words, the wedges rep-
resented by the hashtable.

As shown in Algorithm 7, the TaskDivider of FG

(line 1-6) further divides the subtask of Twc{{u} ⇥ Vj}

3 Here, we use vertex-centric model as an example, other
programming model such as edge-centric has similar ap-
proach.
4 We also tried with both Näıve and BSP-S but found lim-

ited scope for enhancement in either solution.

in BSP-SN into q disjoint parts (therefore, more fine-
grained) of

{Twc{{u}⇥Vj,1}, Twc{{u}⇥Vj,2}, . . . , Twc{{u}⇥Vj,q}},

(7)

where Vj = Vj,1[Vj,2[· · ·[Vj,q and Vj,ix \Vj,iy = ; for
any 1  ix 6= iy  q. We will see that the configuration
of the value q is key to the I/O-parallelism tradeo↵, but
let us first check out the other components of FG. In
line 7-8, TaskScheduler simply pops out the first task
in the concurrent queue, while the dynamic scheduling
technique in [80] is implicitly implemented as:

– The execution order is determined during enqueue-
ing in line 3,

– The assignment of a subtask to an idle worker is
processed naturally in line 19,20.

TaskRunner in lines 9-15 handles running the given sub-
task. It is important to note that the hashtable initial-
ized in line 10 now has a space cost of |Vj |

q as opposed to
|Vj | in the BSP-SN solution, which is the key to reduc-
ing the I/O cost. Accordingly, when enumerating the
vertex w of a wedge (u, v, w) in line 12, the intersection
NG2

(v) \ V ensures that only the wedges with w 2 V

are counted to avoid duplicate counting, where V is a
subset of Vj that is assigned to the worker. The process
will not stop until the query Q becomes empty (line 22).
Each worker with id ⌧ (1  ⌧  W) maintains a local
�⌧ for the butterflies already counted. Finally, an ag-
gregation is conducted in line 23 to summarize the �⌧

for all workers as the final result.
Our FG solution renders space and I/O complexity

as O(|E|

p + W
q ·

|V |

p) and O(|E|
2

MB + W
q ·

|V ||E|

MB), respectively.
We immediately re-approach I/O optimality by setting
q = ⇥(W). However, a large q may result in a subtask
being too fine-grained to run e�ciently in parallel [60]
due to the scheduling overhead.

Configuration of q. We study the configuration of q

to trade the I/O cost and scheduling cost. Let CI/O and

16 Zhibin Wang et al.

Algorithm 7 FG: The “fine-grained” implementation
of PIOBufs
1: function TaskDivider(Twc{V1 ⇥ V2})
2: Configure q according to Equation 8
3: for u 2 V1 in descending order of d(u) do

4: Divide Twc{{u}⇥ V2} into q parts by Equation 7
5: Push the subtasks into the concurrent queue Q

6: return Q

7: function TaskScheduler(Q)
8: return Q.pop()

9: function TaskRunner(G1,G2, Twc{{u}⇥ V})
10: Initialize H{{u}⇥ V ! N}

11: for v 2 NG1
(u) do

12: for w 2 NG2
(v) \ V do

13: � �+H(u,w)
14: H(u,w) H(u,w) + 1

15: return �

16: function IOBufs-edge(Gi,Gj)
17: Load partitioned graphs Gi,Gj into the main memory
18: Q TaskDivider(Twc{Vi ⇥ Vj})
19: parfor an idle worker ⌧ 2 {1, . . . ,W} do

20: Twc TaskScheduler(Q)
21: �⌧ �⌧ + TaskRunner(Gi,Gj , Twc)
22: until Q is empty
23: Aggregate �

P⌧=W
⌧=1

�⌧

24: return �

Csched represent the cost of one I/O and one task syn-
chronization, respectively. When partitioning a graph
into p parts and a subtask into q parts, the total num-
ber of required I/Os is 2p|E|

B , while the total number of
required task synchronizations is p

2
q. As a result, we

have the following optimization problem:

min
p,q2N

|E|

B

CI/O

Csched

p + p
2
q,

s.t. c1

|E|

p
+ c2

W |V |

pq
 M, and p, q 2 N+ .

(8)

The optimization problem aims to find the optimal
partition setting, i.e., p and q, that can minimize over-
all cost. Given p, it is obvious that q must be as small as
possible while satisfying the space requirement. Accord-
ingly, the solver of the optimization problem involves it-
erating p = d

c1|E|

M e (when q ! 1) to p = d
c1|E|+c2T |V |

M e

(when q = 1) and deriving the corresponding q till we
obtain a pair of p and q that can minimize f .

However, although the constant value |E|, |V |, B,
W , M can be directly obtained from the input graph
and the hardware specification, the

CI/O

Csched

ratio, needs
further benchmark tests to determine. In practice, it
can be measured as follows: we first drive p by q accord-
ing to the memory constraint and make the objective
function a function of q, namely f(q); then we iterate
the q value to do some preliminary tests on a small

graph to obtain a q⇤ value that renders the best per-
formance; we finally obtain the

CI/O

Csync

value by letting

f
0(q⇤) = 0, where f

0 denotes the di↵erential of f .
With the solver and available constant values for the

given hardware, we can derive the optimal configuration
of q for any new graph.

Näıve BSP-S BSP-SN FG
0

50

100

150

200

T
im

e
(s

)

OTOTOT OT

W=1

W=4

W=56

(a) Wall clock time.

Näıve BSP-S BSP-SN FG

108

1010

#
I/

O
s

W=1

W=4

W=56

(b) I/O cost.

Fig. 7: Performance of four parallel techniques on Deli-
cious (refers to Table 5) with W = 1, 4, 56.

Micro benchmark. We conducted a micro benchmark
that compares these alternatives, namely Näıve, BSP-S,
and BSP-SN, with our FG solution, and the results of
overall running time and I/Os are shown in Figure 7.
For a test that cannot terminate within one hour, we
mark OT for running time, and manually calculate its
I/O cost. BSP-S fails to complete all test cases. Näıve
scales poorly, and it even runs OT when W = 56. BSP-
SN still performs similarly to FG when W = 4, but
it cannot further benefit from more parallelism and is
outperformed by FG by a large margin when W = 56.
Noticeably, when W increases, the I/O cost of FG al-
most remains constant, while those of the alternative
solutions increase significantly.

Remark 2 When M >> |E|, namely the main memory
is arbitrarily large, we can leverage Equation 8 to derive
an interesting result. Given that the lower bound of p

as d
c1|E|

M e = 1 and the upper bound d
c1|E|+c2T |V |

M e = 1,
we must have p = 1 and q = 1 to minimize Equation 8.
In this case, FG becomes the parallel BFC-VP++ [78].

8 GPU Parallelization

Beyond the CPU-based parallelization, GPUs may be
suitable for accelerating the computationally intensive
butterfly counting task due to their capacity for mas-
sive parallelism and high memory access bandwidth.
For instance, the NVIDIA A100 model that we use in
this work contains 108 streaming multiprocessors (SM),
each equipped with 64 CUDA cores and producing a to-
tal of 19.5 TFLOPS peak performance while providing
up to 2 TB/s of HBM2 memory bandwidth. However,
the shortage of on-board memory in GPUs significantly

Parallelization of Butterfly Counting on Hierarchical Memory 17

Table 3: Variances of W and t while configuring di↵er-
ent kinds of worker on an A100 GPU (110,592 working
threads in total).

Worker Grid Block Warp Thread
W 1 108 3,456 110,592
t 110,592 1,024 32 1

limits its applicability to large graphs. Therefore, we
propose to leverage the memory hierarchy to perform
butterfly counting on GPUs, where the GPU memory
will operate as the main memory, whereas CPU mem-
ory or disk storage can be utilized as the secondary
memory.

In this section, we will investigate the implemen-
tation of the PIOBufs framework on a GPU. In Sec-
tion 7.1, we have demonstrated that the I/O complexity
can escalate due to an increase in the degree of paral-
lelism (i.e., W in CPU). This has led us to design FG on
CPUs for further subdivision of the subtask. On GPUs,
a significantly larger degree of parallelism can be lever-
aged (hundreds of thousands) in comparison to CPUs
(hundreds). As a result, we base the GPU implementa-
tion on FG as outlined in Algorithm 7. Specifically, we
preserve the TaskDivider and TaskScheduler designs
from the FG blueprint, and pay attention to crafting
the TaskRunner tailored for the GPU environment. To
fully leverage the capabilities of GPUs, it is imperative
to address these pivotal considerations:

– Hierarchical Parallelism: As introduced in Sec-
tion 3.3, it is crucial to exploit hierarchical par-
allelism on a GPU. When setting up the PIOBufs

worker, aligning it with the right levels of paral-
lelism becomes a pivotal factor.

– Single Instruction Multiple Threads (SIMT): Ad-
hering to the SIMT computational paradigm, the
GPU, when optimally harnessed, can markedly am-
plify algorithmic performance.

– Coalesced Memory Access: Given the distinctive
memory access pattern of GPUs, which diverges
from that of CPUs, the design of our parallel al-
gorithms must prioritize coalesced memory access.
This ensures full utilization of the memory band-
width.

8.1 What can be the worker on a GPU

The GPU programming has demonstrated a hierarchi-
cal parallelism (Section 3.3) consisting of four levels of
abstraction, arranged from lowest to highest: thread,
warp, block and grid. A question arises: to which level
of parallelism should be used as a worker of PIOBufs on
GPUs. In Table 3, we present the number of workers

Main memory
!! !"Subgraphs

Hashtable

…Grid

…

(a) Architecture of BaaW

Worker 1

ℋ

…

Block

Worker W

ℋ

…

Block

…

Block

…

Warp 1

…

Warp 32

u

Launch a subtask T#${ u ×'}

block

warp thread

(b) Execution of FG-BaaW

v1
v2
…

…w2w1

… ℋ
Update hashtable

Fig. 8: The process of TaskRunner in the optimized
block kernel.

(W) for various worker configurations on the cutting-
edge A100 GPU. Each worker on a GPU now manages
a group of working threads, given as t in Table 3. Note
that the total degree of parallelism (110,592) is equiva-
lent to W · t. While the exact values for W and t might
di↵er across other (NVIDIA) GPU models, the overall
patterns remain largely consistent.

It is straightforward to rule out two undesirable de-
sign choices.

– Thread as a Worker: The straightforward porting of
the FG from CPU to GPU is typically undesirable
in GPU programming due to its inability to lever-
age the SIMT (single instruction multiple threads)
nature of GPU.

– Grid as a Worker: When a large number of work-
ing threads in a grid are engaged in processing a
fine-grained subtask, there is a potential for under-
utilization, resulting from a substantial number of
idle threads.

Next, we will examine the remaining two potential
solutions in detail, namely FG-BaaW (BaaW for “Block
as a Worker”) and FG-WaaW (WaaW for “Warp as a
Worker”).

8.2 Block as a worker

Figure 8(a) illustrates the architecture of FG-BaaW that
considers a block, corresponding to a physical SM in a
GPU, as a worker for the PIOBufs framework. Accord-
ing to Table 3, the number of workers W in FG-BaaW is
108, closely matching that in the CPU scenario. Conse-
quently, we can directly implement the TaskRunner of
FG-BaaW in accordance with Algorithm 8 by inheriting
the I/O-parallelism tradeo↵ from Section 7.2.

Näıve block kernel. It is straightforward to adapt
the FG’s TaskRunner (refer to Algorithm 8 for conve-
nience) as the block kernel for GPUs. This essentially

18 Zhibin Wang et al.

Algorithm 8 FG’s TaskRunner.

1: function TaskRunner(G1,G2, Twc{{u}⇥ V})
2: Initialize H{{u}⇥ V ! N}

3: for v 2 NG1
(u) do

4: for w 2 NG2
(v) \ V do

5: � �+H(u,w)
6: H(u,w) H(u,w) + 1

7: return �

means replacing the “for” directive in line 3 of Algo-
rithm 8 with a “parfor”. Consequently, the instructions
between lines 4-6 will be concurrently executed in a
round-robin fashion by every thread within a block. No-
tably, as the count of vertices within a partition usually
surpasses the number of blocks, we can employ the ker-
nel fusion technique [75]. This method combines mul-
tiple subtasks, specifically Twc{{u} ⇥ V} for several u,
into a singular block kernel, diminishing the frequency
of kernel launches and synchronizations. Moreover, the
initialization of the hashtable in line 2 of Algorithm 8
is conducted only once at the initialization, rather than
for every individual subtask as seen in the original al-
gorithm. However, it is crucial that the hashtable must
be reset after the completion of each subtask.

Coalesced memory access [85,32,54,83]. The
above näıve block kernel does not fully harness opti-
mized memory access. We also notice there are several
GPU graph processing systems [32,54] targeting the co-
alesced memory access in neighbor list processing. But-
terfly counting, however, presents a greater challenge
due to its inherent requirement to process 2-hop neigh-
bors, which complicates the attainment of coalesced
memory access. While prior work has focused on op-
timizing graph layout to enhance memory access pat-
terns [85,32,54], our approach extends beyond graph
structure to place a greater emphasis on thread orga-
nization and the patterns in which 2-hop neighbors are
accessed. Considering the näıve kernel directly employs
the vertex-centric fashion, when assigning individual
GPU threads for computing the 2-hop neighbors w of
a vertex u as illustrated in line 4 of Algorithm 8, each
thread individually triggers distinct memory transac-
tions to retrieve NG1

(v) for di↵erent vertices v (line 3).
Due to the non-contiguous nature of memory storing
NG1

(v) in graph data, this method can incur a surge in
memory transactions from the global memory, thereby
compromising e�ciency. A solution to this bottleneck
is the coalesced memory access technique, facilitated
by assigning a warp (each having 32 threads) in the
block to process a singular vertex v. As demonstrated
in Figure 8(b), each thread within this warp then han-
dles a distinct vertex w in parallel — all of whom are
neighbors of v which are maintained continuously in

the memory — facilitating simultaneous and contiguous
memory accesses. By aligning the memory accesses of
threads in a warp, the coalesced approach helps reduce
scattered memory transactions and results in boosted
performance. A potential issue is, with 32 threads in a
warp, under-utilization might occur if there are fewer
than 32 neighboring vertices w to process in line 4. To
navigate this, we consider further segmenting a warp
into smaller sub-warps [59,23]. Clearly, when a warp
gets divided into 32 single-threaded sub-warps, the pro-
gram reverts to the initial, less e�cient implementation.
Our experiment indicates that sub-warps consisting of
8-16 threads o↵er optimal performance for most tested
graphs. It is noteworthy that G-BFC [86] has overlooked
this coalesced memory access optimization.

Shared memory [56,29,44,43]. As introduced in
Section 3.3, threads within a block have the capabil-
ity to access a rapid, localized memory space termed
shared memory. This access path o↵ers a bandwidth
considerably greater than when tapping into the global
memory. However, a challenge emerges due to the lim-
ited capacity of shared memory, which is constrained
to a default 48 KB per block even in advanced GPUs
like the A100. Notably, vertices with a high degree of-
ten have a pronounced likelihood of being 2-hop neigh-
bors to other vertices. This observation leads us to
segment the hashtable, as outlined in line 2 of Algo-
rithm 8, into two distinct segments: H1{{u} ⇥ Vlarge}

and H2{{u}⇥Vsmall}. The segment Vlarge encompasses
the top-s high-degree vertices from V, where s repre-
sents the capacity of the shared memory. Conversely,
Vsmall denotes the remaining vertices in V after re-
moving those in Vlarge. Throughout computational pro-
cesses, the section H1{{u} ⇥ Vlarge} remains cached in
shared memory, whereas H2{{u} ⇥ Vsmall} is stored in
the global memory. Given the prior arrangement of V

by vertex degree [78], dividing it into Vlarge and Vsmall

is straightforward.

We observe that G-BFC [86] also endeavors to en-
hance hashtable access through shared memory, but its
strategy diverges from ours significantly. Specifically,
G-BFC divides the hashtable into |H|

s chunks, ensuring
each chunk fits within the shared memory. The algo-
rithm then proceeds in |H|

s rounds. In each round, it up-
dates the wedge counts exclusively for the vertex pairs
(u, w) where w resides in the current chunk, leading to
redundant wedge computations. Consequently, this ap-
proach amplifies the time complexity of the algorithm
by a factor of |H|

s . In practice, the size of hashtable
H is contingent on the number of vertices, potentially
extending into the tens of millions (e.g., the Twitter
graph). In contrast, the shared memory has a capac-
ity of merely tens of thousands of buckets. Accordingly,

Parallelization of Butterfly Counting on Hierarchical Memory 19

the amplification factor can reach up to thousands, in-
evitably resulting in ine�ciency.

Algorithm 9 FG-BaaW’s TaskRunner: the optimized
block kernel.
1: /* Cache H1{{u}⇥ Vlarge} in the shared memory */
2: /* Store H2{{u}⇥ Vsmall} in the global memory */
3: /* Set NumThreadsPerSubWarp as size of sub-warp and

NumSubWarpsPerBlock the number of sub-warps in the
thread block */

4: function TaskRunner(G1,G2, Twc{{u}⇥ V})
5: i subWarpId
6: while i < |NG1

(u)| do

7: v NG1
(u)[i]

8: W -list NG2
(v) \ V

9: j threadId
10: while j < |W -list| do

11: w W -list[j]
12: if w 2 Vlarge then

13: � �+ atomicAdd(H1(u,w), 1)
14: else

15: � �+ atomicAdd(H2(u,w), 1)

16: j j + NumThreadsPerSubWarp

17: i i+ NumSubWarpsPerBlock

18: syncthreads()
19: Reset H1 and H2

20: return �

Optimized block kernel. Algorithm 9 presents
FG-BaaW’s TaskRunner as the optimized block kernel.
It is essential to note that the kernel fusion is already
managed by the TaskScheduler, and hence is not dis-
cussed here. Lines 1-2 partition the hashtable into two
segments that reside in shared and global memory, re-
spectively. The TaskRunner then seamlessly processes
each neighbor v of u using all available warps within
the thread block (line 6). Here, the symbol A[i] refer-
ences the i

th item in a collection A. Each thread within
a warp simultaneously calculates the wedge count for v

(lines 8-16), with each thread handling a distinct ver-
tex w. Keep in mind that warps are subdivided into
sub-warps, with the division controlled by the parame-
ter of NumThreadsPerSubWarp. Importantly, the value
of NumSubWarpsPerBlock is determined by the value of
NumThreadsPerSubWarp, as their multiplication yields
the total number of threads within a block. Unlike its
CPU counterpart, hashtables for both H1 (in shared
memory) and H2 (in global memory) are accessed con-
currently by multiple threads in a block. We thus em-
ploy the atomicAdd primitive provided by CUDA to
avoid contentions (lines 13 and 15). In our implemen-
tation, atomicAdd reads a counter at the hashtable
in global or shared memory, adds a number to it,
and writes the result back to the counter. Moreover,
atomicAdd returns the original value of the counter,
which can be added to count �. To conclude the kernel,

it is essential to reset both hashtables once all threads
have confirmed the completion of computations, as ful-
filled by lines 18-19.

8.3 Warp as a worker

Main memory

!! !"Subgraphs

…
Grid

(a) Architecture of WaaW

Worker 1

…
Warp

Worker 2

…
Warp

…

Worker W-1

…
Warp

Worker W

…
Warp u

Launch a subtask T#${ u ×&}

warp

thread

v1

v2

…

…w2w1

…w5w2

pointer

N(u) …

Get the wmin，update (
warp-level primitives

Move to
next w

(b) Execution of FG-WaaW

Fig. 9: The process of TaskRunner in the warp kernel.

The FG-WaaW approach, shown in Figure 9(a),
leverages a warp as a worker to in parallel execute the
TaskRunner in the PIOBufs framework. The number of
workers W now matches the total number of warps on
the GPU. In our case, with an A100 GPU, W = 3, 456
by Table 3. Sticking to the TaskRunner implementation
in Algorithm 8 requires each of the 3,456 workers to al-
locate memory for a hashtable to capture wedge counts.
According to Equation 8, this could compel us to use
a large value for either p or q to satisfy the memory
requirements. Such a decision would increase the I/O
or scheduling costs. Therefore, it is critical to design an
algorithm that circumvents the necessity of utilizing a
hashtable.

Sort-and-scan. In contrast to employing the hashtable
to record the wedges, we introduce an alternative “sort-
and-scan” option for doing wedge counting (and thus
butterfly counting). As illustrated in Figure 9(b), for
each neighbor v of u, we need to process the specific W -
list (the list that maintains w, namely NG2

(v)\V) to de-
termine the wedge count. The “sort-and-scan” method
can be conceptualized (without directly implementing
it in this manner) as follows:

1. Concatenate the W -lists of all neighbors v of u into
a singular list.

2. Sort the concatenated list by the vertex w.
3. Scan the sorted list to determine the wedge count.

Let us look into an illustrative example.

Example 4 Given a present vertex u, which contains
three neighbors v1, v2 and v3. The W -lists of v1, v2 and

20 Zhibin Wang et al.

v3 are {w1, w2, w3}, {w2, w3, w4} and {w1, w3, w4}, re-
spectively. After concatenating and sorting these three
lists (assuming the subscripts of w indicate their or-
der), we end up with a sorted list of {w1, w1, w2,

w2, w3, w3, w4, w4}. Using w1 as an example, it appears
twice in the sorted list. Given that we are dealing with
a simple graph, these two instances of w1 must be ad-
jacent to two di↵erent vertices (specifically v1 and v3).
This implies that there is a butterfly of (u, v1, w1, v2).
Actually, the presence of n such consecutive vertices
of w in the sort list results in the inclusion of n(n�1)

2

butterflies.

Evidently, a direct implementation of the “sort-
and-scan” method, which requires the materialization
of the merged list, is not feasible. Such an approach
would require retaining all 2-hop neighbors w (that
can be repeated) in memory. This could be even more
resource-intensive than maintaining the hashtable in
Algorithm 8, which only logs a distinct number for each
w.

Fortunately, we may not need to actually material-
ize and sort the merged list due to the following two
observations:

1. Given that the neighbors of a vertex have already
been pre-sorted, we can e�ciently merge these mul-
tiple W -lists using the well-established “merge-sort”
algorithm.

2. For wedge counting, our primary concern is de-
termining the frequency of each specific w in
the merged list. This eliminates the need to pre-
materialize the entire list.

Merge-sort transformation. We introduce a novel
TaskRunner design for FG-WaaW that is inspired by the
k-way “merge-sort” algorithm. The new TaskRunner

leverages warp-level primitive operations for merging
the W -lists and counting wedges. As depicted in Fig-
ure 9(b), when we delegate a warp to undertake the
wedge-counting task of Twc{{u} ⇥ V}, each of the 32
threads within the warp will concurrently handle a dis-
tinct vertex v 2 NG1

(u) to traverse its W -list. Given
d(u) as the number of vertices v in the present task, for
simplicity, we assume d(u)  32 such that each thread
in the warp is responsible for no more than one W -
list. We will look into the scenarios where d(u) > 32 in
subsequent discussions.

Before delving into the warp kernel design, let us
first revisit the high-performance warp-level primitives
provided by CUDA. Notably, we capitalize two such
primitives to fulfill the ”merge-sort” approach for wedge
counting.

– reduce min sync(val): When invoked, each
thread within a warp simultaneously provides its

distinct input value as val. This operation then
identifies the minimum among these values and re-
turns it to every thread in the warp.

– reduce sum sync(val): Similar to reduce min

sync, this function computes and returns the ag-
gregate (sum) of all val values presented by the
threads in the warp.

Algorithm 10 FG-WaaW’s TaskRunner: the warp ker-
nel
1: function TaskRunner(G1,G2, Twc{{u}⇥ V})
2: i threadId
3: v NG1

(u)[i]
4: W -list NG2

(v) \ V

5: wlocal W -list.pop()
6: while W -list 6= ; do
7: wmin reduce min sync(wlocal)
8: if wlocal = wmin then

9: c 1
10: wlocal W -list.pop()
11: else

12: c 0
13: n reduce add sync(c)
14: if i % 32 = 0 then

15: � �+ n(n�1)

2

16: syncwarp().
17: return �

In Algorithm 10, we outline the warp kernel as
FG-WaaW’s TaskRunner. Within each warp, the 32
threads operate in parallel, each processing the W -list
of a distinct vertex v (lines 2-3). Given that the W -list
has been pre-sorted, retrieving the local minimum ver-
tex wlocal is as straightforward as popping the first el-
ement of the list (line 4). While processing the while

loop, each thread always holds the local minimum ver-
tex wlocal from the unprocessed vertices in its respec-
tive W -list. With this in mind, the reduce min sync

operation allows us to pinpoint the global minimum
vertex wmin among all threads in the warp (line 7).
Given that the graph is simple and devoid of duplicate
edges, the minimum value stands as a singular entity
within each list. Consequently, when the local mini-
mum wlocal within a thread aligns with the value of
the global minimum wmin, it signifies a local count of
1. This event prompts progression towards the subse-
quent local minimum wlocal (line 9, 10). Conversely, the
local count is set to 0 (line 12). Subsequently, using the
reduce sum sync function, the aggregate count n for

the entire warp is computed (line 13). The first thread
in the warp (line 14) then calculates the updated wedge

count, augmenting it by the value of n(n�1)

2
(line 15).

Example 5 Figure 9(b) demonstrates the process of a
subtask Twc{{u}⇥V} by a warp. During each iteration,

Parallelization of Butterfly Counting on Hierarchical Memory 21

reduce min sync are employed to obtain the wmin

(i.e., w2 as highlighted in the black dotted box) among
the threads. As the first two threads observe their cur-
rent wlocal matching the global minimum wmin, they
advance the pointers to the subsequent elements in the
lists.

Complexity analysis. The space complexity for
FG-WaaW’s TaskRunner is O(|E|

p) as no hashtable is re-
quired. It is worth noting that the assignment of W -list
in line 4 is just for ease of presentation, which does not
incur any additional space consumption. Correspond-
ingly, the I/O complexity aligns with that of sequential
algorithm Algorithm 4. Regarding the time complexity,
it increases the time complexity of IOBufs-edge by a fac-

tor of r, namely O(r(⇤+ |E|
2

M)), where r is the complex-
ity inherent in the reduce primitives reduce min sync

and reduce sum sync. In practice, r can be recog-
nized as a small value, as these primitives are executed
directly within GPU registers, boasting a significantly
enhanced e�ciency.

Handling d(u) > 32. To extend Algorithm 10 to ver-
tices u with d(u) > 32, we can assign each thread to

handle k = d
d(u)

32
e W -lists in line 4. However, this re-

quires executing the reduce min sync in line 7 and
reduce sum sync line 13 for k times, further increas-

ing the time complexity by a factor of k. In the worst
case, k can be O(|V |), which will be further discussed
in Section 8.4.

8.4 The adaptive kernel

We have presented two distinct GPU implementations,
namely FG-BaaW and FG-WaaW, with each possess-
ing its unique merits and limitations. The FG-BaaW
approach, following the FG method on CPUs, readily
adopts the I/O-parallelism tradeo↵ discussed in Sec-
tion 7.2. Yet, with 1024 threads in a block, there is a
potential issue of under-utilization. While our introduc-
tion of sub-warping in Section 8.2 aims to ameliorate
the issue, it does not eradicate the problem. For in-
stance, with NumThreadsPerSubWarp set at 16, a block
contains only 64 sub-warps. If d(u) < 64, it inevitably
results in idle threads while processing the task.

Conversely, with a novel TaskRunner design in
FG-WaaW, there is no need to allocate a hashtable
for each worker, which presents a notable advantage
in terms of conserving space and minimizing I/O com-
plexity. Nevertheless, as explored in Section 8.3, the
time complexity of FG-WaaW can escalate by a factor
of r · d

d(u)

32
e. This makes it less e�cient when dealing

with vertices of a higher degree.

It is thus intuitive to adaptively combine FG-BaaW
and FG-WaaW, making the choice contingent upon
d(u). Specifically, with a predetermined degree thresh-
old dt, we opt for FG-WaaW for processing a vertex
u when d(u)  dt and resort to FG-BaaW otherwise.
While G-BFC implements a comparable adaptive ker-
nel, our approach distinctly leverages more e�cient
algorithms for both block and warp kernels. Unlike
G-BFC [86], which also includes a thread kernel, we re-
frain from incorporating such a kernel as it significantly
increases the time complexity. In addition, kernel selec-
tion of G-BFC relies on the size of 2-hop neighbors of
u, a metric that is costly to compute and often neces-
sitates approximation. In contrast, our criterion, d(u),
can be e↵ortlessly retrieved from the graph data.

9 Experimental Setup

All evaluated algorithms are implemented in
C++/CUDA, and compiled with g++ 7.5.0 and
CUDA Toolkit 11.6. The optimization flag is set as
“-O3”. We deployed two hardware contexts with the
hardware configurations listed in Table 4. Unless
otherwise specified, we set the main memory capacity
to 25% of the graph size by default, i.e. M = 25%|E|.
Note that we control memory usage using cgroup
configuration [1] (a Linux kernel feature) in order to
diminish the impact of caching for properly bench-
marking the I/O cost. Throughout the experiments,
we mark OT if an algorithm cannot terminate in one
hour. For an algorithm running OT, the presented
#I/Os is manually computed according to Equation 1.

Table 4: Hardware configurations.

Items CPU Context GPU Context

Hardware Intel Xeon Gold 6330 NVIDIA A100 GPU

Processors 56 cores 108 SMs

Main Memory 128GB CPU memory 40GB GPU memory

Sec. Memory 1TB SSD 128GB CPU memory

Datasets. The statistics and sources of the graphs are
summarized in Table 5. Particularly, MANN is a real
dense graph provided by DIMACS [17] for graph chal-
lenges. Journal, Delicious, and Orkut are social net-
works representing user-group memberships of online
communities. Flickr [51] shows the user-photo relation-
ships on an online photo-sharing website. Tracker is the
web tracking dataset representing the relationships be-
tween the internet domains and the trackers they con-
tain. Bi-twitter, Bi-sk, and Bi-uk are subgraphs of large
real social graph Twitter [34] and web graph sk-2005

22 Zhibin Wang et al.

Table 5: Graph statistics.

Graph Src. |V | |E| d � Sizes

MANN [62] 3.32E+03 5.51E+06 3,316 1.51E+13 44M

Flickr [33] 5.00E+05 8.55E+06 34 3.53E+10 72M

Journal [33] 1.07E+07 1.12E+08 21 3.30E+12 1.0G

Delicious [33] 3.46E+07 1.02E+08 6 5.69E+10 1.1G

Tracker [33] 4.04E+07 1.41E+08 7 2.01E+13 1.4G

Orkut [33] 1.15E+07 3.27E+08 57 2.21E+13 2.7G

Bi-twitter [78] 4.17E+07 6.02E+08 29 6.30E+13 5.1G

Bi-sk [78] 5.06E+07 9.11E+08 36 1.22E+14 7.7G

Bi-uk [78] 7.77E+07 1.33E+09 34 4.89E+14 11G

Clueweb [14] 9.78E+08 3.74E+10 76 1.49E+18 286G

and uk-2006-05 from WebGraph [10,9,8]. We follow [78]
to construct bipartite graphs from them. Among the
graphs, we use MANN, Journal, Delicious, and Orkut
as default datasets in some tests. Clueweb is a gigan-
tic web graph whose size is larger than the configured
memory of our machine. It is used to test the real-life
performance of our algorithm without manually con-
trolling the memory. In addition, we apply the Kro-
necker generator [39] to generate synthetic graphs to
purposely control the statistics.

Configuration of IOBufs. All graphs have been pre-
processed into undirected simple graphs, and organized
in the format of compressed sparse row (CSR). Each
vertex is identified by a 4-byte integer, and their ids are
rearranged according to the degree (priority) following
[78]. The size of each graph is reported accordingly. By
default, we apply the “Radix” strategy [37] to partition
the graph, as will be discussed in Section 10.6. Given
the graph storage, the constant values of c1, c2 are de-
termined by the memory usage of the edges and wedges,
respectively, and c3 is computed in Equation 6. We set
c1 = 16 as it takes 4 bytes to store the end vertex of an
edge, and each edge must be stored in two directions
for two partitioned subgraphs; c2 = 4 as we record the
wedge count between two vertices as an integer; and
immediately c3 = 0.25.

Table 6 summarizes the default configuration of
IOBufs utilized in the experiments.

Table 6: Default configuration of IOBufs.

Parameter Value
c1 16
c2 4
c3 0.25
p, q According to Equation 8
M 25%|E|

W, t CPU: 56, 1; GPU: refer to Table 3
Shared memory for H 32KB per block
NumThreadsPerSubWarp 16

10 Evaluation on CPU Context

The empirical studies concerning the CPU context are
conducted against the following algorithms:

The IOBufs variants. IOBufs-Näıve, IOBufs-edge, and
IOBufs-wedge are our algorithms given in Algorithm 3,
Algorithm 4, and Algorithm 5, respectively. IOBufs

denotes the I/O-optimal algorithm in Algorithm 6
that can adaptively choose between IOBufs-edge and
IOBufs-wedge based on graph density. In the sequen-
tial context, the partition number p will be configured
according to Remark 1 for each variant. Additionally,
IOBufs-edge, IOBufs-wedge, and IOBufs can run in par-
allel according to Section 7. We use the DoP t = 56 by
default. p and q will be either configured according to
Equation 8 by default or specified otherwise.

The BFC variants. We compare two BFC variants [78],
namely BFC-VP++ and BFC-EM. BFC-VP++ is the
most optimized variant of the kind developed in the
parallel (in-memory) context, while BFC-EM stands for
the variant leveraging disk as the secondary memory.
The authors have not made the source codes publicly
accessible. Thus, we apply our IOBufs-edge running in
parallel with arbitrarily large M as BFC-VP++ (Re-
mark 2). Since BFC-EM cannot fit into our framework,
we implement the algorithm by referencing the paper
and consulting with the authors.

EMRC. The EMRC algorithm is introduced in [98].
The authors do not provide the source codes, but it
is actually IOBufs-Näıve with p = d

|E|

M e according to
Section 4.3. However, it runs OOM in most cases under
this original setting. Thus, we set p = d

c1|E|

M + c2|V |
p
M

e

for EMRC.
Note that the authors of BFC and EMRC agree that

we faithfully reproduced their results.

10.1 Comparison with the SOTA

In this section, we compare IOBufs with the
hierarchical-memory algorithms: BFC-EM and EMRC.
Figure 10 shows the results of wall clock time and
#I/Os on all graphs in Table 5. For EMRC, it su↵ers
from huge I/O costs and thus runs OT in all cases ex-
cept MANN. According to our analysis in Section 4.3,

EMRC must maintain both wedges (O(|V |
2

p2)) and edges

(O(|E|

p)) in the main memory, while IOBufs only main-
tains one of them. In a dense graph such as MANN
whose wedges and edges are relatively close in volume
(by |E| ⇡ |V |

2
/p in each partition), EMRC can per-

form similarly to IOBufs. While in other sparse datasets
which contain much more wedges than edges, the per-
formance of EMRC downgrades dramatically. Let us

Parallelization of Butterfly Counting on Hierarchical Memory 23

MANN Flickr Journal Delicious Tracker Orkut Bi-twitter Bi-sk Bi-uk Clueweb

100

101

102

103

T
im

e
(s

)

OT OT OT OT OTOT OT OT OT OT OT OT OT OTOT

BFC-EM EMRC IOBufs (t=1) IOBufs (t=56)

(a) Wall clock time.

MANN Flickr Journal Delicious Tracker Orkut Bi-twitter Bi-sk Bi-uk Clueweb
105

107

109

1011

#
I/

O
s

(b) I/O cost.

Fig. 10: The performance of IOBufs, BFC-EM, and
EMRC.

look into BFC-EM whose I/O complexity is determined
by the number of wedges in the graph. Observe that it
performs worse on the graphs with more wedges. Partic-
ularly on MANN, a small but dense graph, BFC-EM per-
forms the worst among all algorithms. Overall, based on
the available cases, IOBufs (single thread) outperforms
BFC-EM by 25⇥ on average in term of wall clock time.
Regarding I/O cost, it incurs 209⇥ and 364⇥ less I/Os
than BFC-EM and EMRC, respectively. Moreover, we
can further speed up IOBufs via parallelism. Observe
that the I/O cost only slightly increases in the parallel
cases, mostly due to the fine-grained parallelism. Hence-
forth, unless otherwise specified, one may be aware that
the IOBufs-wedge variant is chosen for the dense graph
MANN, while IOBufs-edge variant is used for all other
graphs.

Furthermore, to reveal the ability of IOBufs on the
huge real-world graph, we run IOBufs on the gigantic
Clueweb [10,9,8] containing almost 1 billion vertices
and 37 billion edges, a total of 286GB, using all the
configured memory (128GB) of our machine. The ex-
perimental results show that IOBufs successfully counts
butterflies at the scale of quintillions (1018) on Clueweb
in 2182s, while BFC-EM and EMRC run OT, and their
I/O costs are extremely large (more than 1011 I/Os),
and thus omitted in Figure 10(b).

10.2 Impact of memory

As indicated in [27], memory size is critical to the per-
formance of hierarchical memory algorithms. We hence
vary M from 1%|E| to 25%|E| to evaluate the algo-
rithms BFC-EM, EMRC, and IOBufs, and report the re-
sults in Figure 11. Clearly, BFC-EM cannot benefit from

a larger memory configuration, as its performance al-
most remains fixed while increasing the memory size.
EMRC can still only handle MANN, but it shows per-
formance improvement in this case as the growth of
memory. Our IOBufs demonstrates an obvious dropping
trend for both wall clock time and #I/Os when there
is a larger memory to run the algorithm. Such a trend
is more notable in the parallel cases because there are
larger subtasks to run rendering lower scheduling over-
head when the memory is su�cient (according to space
requirement). Notice that the single-threaded IOBufs

performs better than the multi-threaded version with
M = 1%|E| in Figure 11(c). With such small mem-
ory, each partitioned subgraph and the corresponding
workload become too small to benefit from parallelism.
Noticeably, IOBufs consistently outperforms the com-
petitors throughout all memory configurations. Its per-
formance is already reasonably good even with 1%|E|

memory, while we recommend at least 5%|E| memory
if possible to better exploit parallelism.

10.3 IOBufs-edge vs. IOBufs-wedge

Varying degree: As discussed in Section 6, the av-
erage degree d will a↵ect the choice of IOBufs-edge
and IOBufs-wedge of our algorithm. We show the ra-
tionale for this design choice. To do so, we generate 5
graphs using kronecker [39] with (almost) fixed num-
ber of edges and vary d as shown in Figure 12. We
use the default memory of 25%|E| ⇡ 5GB. Therefore,
the dividing point of the degree is roughly 0.25

p
M ⇡

18000. As shown in Figure 12, the two variants of
the algorithm perform comparatively around the di-
viding point. On the left-hand side where the de-
grees are larger, IOBufs-wedge performs better than
IOBufs-edge. On the other side where the degrees are
smaller, IOBufs-edge outperforms IOBufs-wedge in turn.
The I/O cost reflects the same trend as running time.
The results are consistent with our discussions in Sec-
tion 6.
Transitivity closure analysis: In the network anal-

ysis, it is interesting to construct a TC graph from
the base graph by adding edges between vertices that
are originally disconnected but form transitive closures
(i.e., wedges) [31]. Let the base graph be G0, G1 be
the TC graph constructed from G0, and G2 be the one
constructed from G1, and so forth. This process can in-
crease the density of a graph, and thus is used to study
the performance of IOBufs-edge and IOBufs-wedge. We
generate a graph with d = 16 and |V | = 214 as G0,
based on which G1 and G2 are constructed. Figure 13
illustrates the results on these graphs. As the aver-

24 Zhibin Wang et al.

1.25 ⇥ 22 1.25 ⇥ 23 1.25 ⇥ 24

Memory size (%)

10�1

100

101

102

T
im

es
(s

)

BFC-EM EMRC IOBufs (t=1) IOBufs (t=56)

1 5 10 15 20 25
Memory size (%)

10�1

100

101

102

103

104

T
im

e
(s

)

(a) MANN (Wall clock time).

1 5 10 15 20 25
Memory size (%)

100

101

102

103

104

T
im

e
(s

)

(b) Journal (Wall clock time).

1 5 10 15 20 25
Memory size (%)

100

101

102

103

104

T
im

e
(s

)

(c) Delicious (Wall clock time).

1 5 10 15 20 25
Memory size (%)

101

102

103

104

T
im

e
(s

)

(d) Orkut (Wall clock time).

1 5 10 15 20 25
Memory size (%)

105

106

107

108

109

1010

#
I/

O
s

(e) MANN (I/O cost).

1 5 10 15 20 25
Memory size (%)

107

108

109

1010

1011

#
I/

O
s

(f) Journal (I/O cost).

1 5 10 15 20 25
Memory size (%)

107

108

109

1010

1011

#
I/

O
s

(g) Delicious (I/O cost).

1 5 10 15 20 25
Memory size (%)

107

108

109

1010

1011

#
I/

O
s

(h) Orkut (I/O cost).

Fig. 11: Memory size impact.

43439 24860 18502 6698 3466

Average degree d

0

1

2

3

4

T
im

e
(s

)

⇥103

IOBufs-edge

IOBufs-wedge

(a) Wall clock time.

43439 24860 18502 6698 3466
Average degree d

0.0

0.5

1.0

1.5

2.0

#
I/

O
s

⇥109

IOBufs-edge

IOBufs-wedge

(b) I/O cost.

Fig. 12: Cost of IOBufs-edge and IOBufs-wedge on five
generated graphs with di↵erent average degrees.

RawExtend-1Extend-2

105

106

107

#
I/

O
s

IOBufs-edge IOBufs-wedge

G0 G1 G2

10�1

100

101

102

T
im

e
(s

)

(a) Wall clock time.

G0 G1 G2

104

105

106

107

#
I/

O
s

(b) I/O cost.

G0 G1 G2

102

103

104

d

(c) Degree.

Fig. 13: Performance of IOBufs-edge and IOBufs-wedge
on TC graphs

age degree increases, IOBufs-edge initially outperforms
IOBufs-wedge by a large margin on G0, and is caught
up with and eventually overturned by IOBufs-wedge on
G1 and G2.

10.4 Scalability

Scale-up. To reveal the scale-up performance of our
fine-grained parallel technique, we vary the number
of threads t and run IOBufs in di↵erent memory set-

223 224 225 226 227

Verices |V |

106

107

108

109

#
I/

O
s

M = 10%|E| M = 25%|E| M = |E| M = 1

1 2 4 8 16 32 56
Threads t

10�1

100

101

102

T
im

e
(s

)

(a) MANN.

1 2 4 8 16 32 56
Threads t

100

101

102

103

T
im

e
(s

)

(b) Journal.

1 2 4 8 16 32 56
Threads t

100

101

102

103

T
im

e
(s

)

(c) Delicious.

1 2 4 8 16 32 56
Threads t

101

102

103

104

T
im

e
(s

)

(d) Orkut.

Fig. 14: Scale-up performance of IOBufs, varying t.

tings on the default graphs. Note that we include
the case that M = 1, in which IOBufs-edge be-
comes BFC-VP++ according to Remark 2. As shown
in Figure 14, we observe that the cases of smaller
memory typically have worse scale-up performance. In
these cases, there are more subtasks to run, and the
scheduling cost increases accordingly. Nevertheless, it
already scales almost as well as the in-memory algo-
rithm BFC-VP++ by slightly increasing the memory
to 25%|E|. Overall, the performance of the algorithms
with M = 10%|E|, 25%|E|, |E|, and 1 are improved by
11⇥, 21⇥, 20⇥ and 23⇥, respectively, while increasing

Parallelization of Butterfly Counting on Hierarchical Memory 25

the working threads from 1 to 56. The case of M = |E|

is also an interesting baseline. Note that the in-memory
BFC-VP++ cannot run in this case because there is no
room for maintaining the wedges, while our IOBufs can
achieve competitive performance.

223 224 225 226 227

Verices |V |

106

107

108

109

#
I/

O
s

M = 10%|E| M = 25%|E| M = |E| M = 1

223 224 225 226 227

vertices |V |

100

101

102

103

T
im

e
(s

)

(a) Sparse graphs with d = 16.

212 213 214 215 216

vertices |V |

10�1

100

101

102

103

104

T
im

e
(s

)

(b) Dense graphs with d =
50%|V |.

Fig. 15: Data-scale performance of IOBufs, varying
sizes.

Data-scale. To study the data-scale performance, we
apply Kronecker generator and generate: 1) 5 sparse
graphs with fixed d as 16 and varying |V | from 223 to
227; 2) 5 dense graphs with d = 50%|V | and varying |V |

from 212 to 216. The results of running the algorithm
in di↵erent memory settings are reported in Figure 15.
According to Section 6, the IOBufs-edge variant will be
adopted except for the cases of testing on the dense
graphs with M = 10%|E| and M = 25%|E|. Using
M = 1 as the baseline, IOBufs scales pretty well in all
cases, even when configuring 10%|E| memory size.

10.5 The fine-grained parallelism

We evaluate the e↵ectiveness of the fine-grained paral-
lelism proposed in Section 7. We run IOBufs (or more
specifically IOBufs-edge) in di↵erent memory settings
by varying the q value from 1 to 56, and show the re-
sults of the four graphs in Figure 16. Note that here
we replace MANN in the default graphs with Tracker
because IOBufs-wedge does not need fine-grained paral-
lelism. On each line in Figure 16, there is a solid-filled
point that represents the derived value of q by the solver
of Equation 8, which aligns very well with the q that ac-
tually gives the best performance. Observe that except
M = 1, the performance of all cases demonstrates a
trend of first descending and then ascending with the
increase of q. In the beginning, the performance is im-
proved because a larger q can result in a smaller I/O
cost. After passing the optimal value, the performance
declines in turn as a larger q introduces more cost for
scheduling than benefit. Note that for M = 1, the

223 224 225 226 227

Verices |V |

106

107

108

109

#
I/

O
s

M = 10%|E| M = 25%|E| M = |E| M = 1

1 2 4 8 16 32 56
q

100

101

102

103

T
im

es
(s

)

(a) Tracker.

1 2 4 8 16 32 56
q

100

101

102

T
im

es
(s

)

(b) Journal.

1 2 4 8 16 32 56
q

100

101

102

103

T
im

es
(s

)
(c) Delicious.

1 2 4 8 16 32 56
q

101

102

T
im

es
(s

)

(d) Orkut.
Fig. 16: Performance of fine-grained parallelism of
IOBufs, varying q.

best configuration of q (as well as p) is always 1, as we
analyzed in Remark 2.

10.6 Impact of partition strategy

Time I/O IR
0.8

0.9

1.0

1.1

1.2

re
la

ti
ve

ly
co

st
/r

ad
io

OT 370 15859

Random Radix Range

Time #I/Os IR
0.8

0.9

1.0

1.1

1.2

re
la

ti
ve

ly
 c

os
t/

ra
tio

(a) MANN.

Time #I/Os IR
0.8

0.9

1.0

1.1

1.2

re
la

ti
ve

ly
 c

os
t/

ra
tio

OT 370 15859

(b) Journal.
Fig. 17: Performance of three partitioning approaches.

Given a vertex of id i, we compare three commonly-
used partition strategies as mentioned in Section 4.2: 1)
Random: place the vertex in the partition of rand(i)%p,
where rand() is a pseudo-random number generator; 2)
Radix [37] : place the vertex in the partition of i%p; 3)
Range [98] : place the vertex according to which range
its id belongs to, or more specifically, in the partition of
bi⇥p/|V |c. We evaluate the degree of balance achieved
by a partitioning strategy via the imbalance ratio [56],

denoted as IR = maxi(|Ei|)

mini(|Ei|)
. Figure 17 reports the re-

sults of the three partition strategies on a dense graph
MANN and a sparse graph Journal, in which Time and
#I/Os are relative to the “Random” strategy. The re-
sults of “Random” and “Radix” are very similar. To be

26 Zhibin Wang et al.

precise, “Radix” is slightly more balanced than “Ran-
dom”, and on top of that the algorithm also performs
slightly better. Because of this, we use “Radix” as the
default strategy. The “Range” strategy performs very
di↵erently on MANN and Journal, which results from
the rearrangement of vertex ids by degrees. On MANN
where all vertices roughly have the same degree, the
partition is balanced, but on Journal, the partition in
preceding ranges clearly involves vertices of larger de-
gree, and thus more edges. The poor performance of
the algorithm is observed with such an imbalanced par-
tition. In summary, the partition strategy should have
little impact on IOBufs as long as it produces a balanced
number of edges across partitions.

11 Evaluation on GPU Context

In this section, we evaluate the performance of IOBufs
on GPUs. As the I/O and IOBufs have already been
evaluated in Section 9, we focus on the performance of
the optimization techniques in GPUs (Section 8). To
facilitate our discussion, we use IOBufs to represent the
adaptive kernel of FG-WaaW and FG-BaaW. By default,
we set NumThreadsPerSubWarp to 16, and the shared
memory size to 32KB, which yields the optimal perfor-
mance for IOBufs.

11.1 Comparison with the SOTA

We compare G-BFC [86] that implements butterfly
counting on GPUs. However, as of now, the authors
have not provided access to the code of G-BFC for our
evaluation. Additionally, it is essential to acknowledge
that various design elements, including the use of spe-
cialized data structures like hashtables on GPUs [56],
have a substantial impact on the performance of G-BFC.
These intricacies make it challenging to reproduce their
code and results accurately.

Table 7: Performance of G-BFC and IOBufs on Journal.

Alg.
Memory

GPUs
Memory FP32 (float)

Time
capacity bandwidth performance

G-BFC 1 3090 936 GB/s 35.6 TFLOPS 30 s

IOBufs 1 A100 1555 GB/s 19.5 TFLOPS 0.6 s

IOBufs 25%|E| A100 1555 GB/s 19.5 TFLOPS 4.2 s

Table 7 presents the performance of G-BFC and
IOBufs on the Journal dataset (Table 5), which is the
largest graph evaluated by G-BFC. It should be noted
that the performance metrics for G-BFC are sourced

from their original publication [86]. We utilized a di↵er-
ent GPU card A100 while G-BFC is evaluated on 3090.
As A100 is equipped with enhanced memory band-
width, we adjusted IOBufs kernel time by a factor of
1555

936
= 1.7 to ensure a fair comparison. When harness-

ing the full memory capacity, IOBufs performs approxi-
mately 30⇥ faster than G-BFC. This trend persists even
when memory is restricted to 25%|E|, with IOBufs still
achieving speeds nearly 4⇥ faster than G-BFC. The ad-
vantage of IOBufs over G-BFC can be traced back to
the foundational design principles of both algorithms.
First, although both leverage the hierarchical paral-
lelism of GPU programming, IOBufs maintains an opti-
mized time complexity, while G-BFC adopts a less opti-
mal algorithm. Second, IOBufs exploits more GPU fea-
tures, such as coalesced memory access, sub-warp opti-
mization, and warp-level primitive operations.

11.2 The design choice of FG-BaaW

We evaluate the performance of FG-BaaW kernel with
di↵erent configurations. Notably, the FG-WaaW ker-
nel consistently outperforms the FG-BaaW kernel when
dealing with small workloads of Twc{{u} ⇥ V } with
d(u)  32 (as will be analyzed in the subsequent sec-
tion). Thus, we focus our performance evaluation of
FG-BaaW specifically on workloads with d(u) > 32, as
otherwise FG-WaaW is the preferred kernel.

1 4 16

5

10

M = 10%|E| M = 25%|E| M = |E| M = 1

1 2 4 8 16 32
NumThreadsPerSubWarp

10�1

100

101

102

T
im

e
(s

)

(a) Tracker.

1 2 4 8 16 32
NumThreadsPerSubWarp

10�1

100

101

102

T
im

e
(s

)

(b) Journal.

1 2 4 8 16 32
NumThreadsPerSubWarp

10�1

100

101

102

T
im

e
(s

)

(c) Delicious.

1 2 4 8 16 32
NumThreadsPerSubWarp

100

101

102

T
im

e
(s

)

(d) Orkut.

Fig. 18: Impact of NumThreadsPerSubWarp.

Parallelization of Butterfly Counting on Hierarchical Memory 27

Impact of NumThreadsPerSubWarp. As discussed in
Section 8.2, the NumThreadsPerSubWarp presents a
trade-o↵ between memory access and thread uti-
lization. A smaller NumThreadsPerSubWarp may lead
to uncoalesced memory access, whereas a larger
NumThreadsPerSubWarp can result in idle threads.
Therefore, we conduct a performance evaluation of
FG-BaaW by varying the NumThreadsPerSubWarp to de-
termine the optimal configuration. Notice, by setting
the NumThreadsPerSubWarp equivalent to 1, FG-BaaW
reduces to the block kernel in G-BFC.

Figure 18 demonstrates the performance of
FG-BaaW with varying NumThreadsPerSubWarp

on the default graphs. With the increasing
NumThreadsPerSubWarp, the performance shows a
decreasing trend followed by an increasing trend,
while the best performance is achieved when the
NumThreadsPerSubWarp is around 8, 16. Accordingly,
we have established a default NumThreadsPerSubWarp

of 16 in our experiments. Moreover, the experiments
also reveal several interesting insights. Firstly, the
density of the graph plays a pivotal role: dense graphs
with su�cient workload in each subtask tend to benefit
from a larger NumThreadsPerSubWarp, as it mitigates
uncoalesced memory access, while sparse graphs with
relatively small workload in each subtask often favor
smaller subwarps to enable better thread utilization.
Secondly, the available main memory size also influ-
ences the optimal NumThreadsPerSubWarp. In scenarios
with limited memory capacity, smaller subwarps are
preferable, as the workload is partitioned into smaller
pieces, aligning well with the characteristics of small
subwarps. Conversely, in settings with su�cient main
memory resources, larger subwarps can be e↵ectively
utilized by processing larger workloads to improve
coalesced memory access.

Leveraging the shared memory. Another optimiza-
tion for FG-BaaW is to incorporate the shared memory
to cache the hashtable. We observe that setting lim-
ited GPU memory size will result in the caching of the
hashtable and graph in the L1 cache or L2, and man-
ually caching the hashtable in the shared memory only
has a marginal performance improvement. Thus, our
experiments focus on the scenario with full memory ca-
pacity.

Figure 19(a) demonstrates the performance of
FG-BaaW with di↵erent shared memory sizes across var-
ious graphs with su�cient GPU memory. The experi-
mental results indicate a consistent trend of improved
performance as the shared memory allocation increases.
On average, utilizing 32KB shared memory yields 12%
speedup. This performance improvement is mainly at-
tributed to the reduction of global memory access. To

Flickr Journal Delicious Tracker Orkut Bi-twitter Bi-sk Bi-uk
0.50

0.75

1.00

1.25

1.50

S
p
ee

d
u
p

0KB 4KB 8KB 16KB 32KB

(a) Speedup of Shared Memory Utilization.

Flickr Journal Delicious Tracker Orkut Bi-twitter Bi-sk Bi-uk
0%

25%

50%

75%

100%

R
at

io

Shared Memory Ratio Global Memory Ratio

(b) Shared Memory to Global Memory Access Ratio.

Fig. 19: Shared memory size impact.

gain deeper insights, we investigate the distribution of
hashtable accesses within the shared memory, as de-
picted in Figure 19(b). The experimental results reveal
that, on average, approximately 59% of hashtable ac-
cesses occur within the shared memory when utilizing
32KB of shared memory. Interestingly, we also observe
that larger graphs, such as Bi-uk, experience limited
performance improvements. This phenomenon can be
attributed to the larger hashtable requirements of such
graphs, which significantly surpass the available shared
memory whose size is constrained.

11.3 FG-BaaW vs. FG-WaaW

As previously mentioned, employing the FG-BaaW ker-
nel will lead to idle threads for workloads with smaller-
degree vertices, while employing the FG-WaaW kernel
will increase the complexity for vertices with larger de-
grees. A better solution is adaptively configuring the
kernel according to the vertex degree. Figure 20 demon-
strates the performance of three variants: BaaW-only,
adaptive, and WaaW-aggressive, where BaaW-only vari-
ant always chooses FG-BaaW kernel for each kind of
workload, adaptive variant configures the faster variant
for a di↵erent kind of workload, and WaaW-aggressive
variant aggressively utilizes the FG-WaaW kernel while
possible. Note that it is often not possible to only adopt
FG-WaaW, which can only support the workload of ver-
tex u with d(u)  1024. This limitation arises from the
constrained register capacity within a warp on A100
GPUs. The adaptive variant outperforms BaaW-only
and WaaW-aggressive variants by up to 46⇥ and 6.4⇥,
respectively. By comparing the BaaW-only with WaaW-

28 Zhibin Wang et al.

10%|E| 25%|E| |E| 1
0

20

40

60

BaaW-only Adaptive WaaW-aggressive

10%|E| 25%|E| |E| 1

Memory size

100

101

102

103

T
im

e
(s

)

(a) Tracker.

10%|E| 25%|E| |E| 1

Memory size

10�1

100

101

102

T
im

e
(s

)

(b) Journal.

10%|E| 25%|E| |E| 1

Memory size

100

101

102

103

T
im

e
(s

)

(c) Delicious.

10%|E| 25%|E| |E| 1

Memory size

100

101

102

T
im

e
(s

)

(d) Orkut.

Fig. 20: The performance of FG-BaaW, FG-WaaW and
hybrid of two levels of parallelism.

aggressive, we observe that the density of the graph
makes a di↵erence. The BaaW-only variant always per-
forms better in the Orkut graph with d = 57, while the
WaaW-aggressive alternative has better performance in
the sparse Tracker graph with d = 7.

To further reveal the di↵erences of the ker-
nels of FG-BaaW and FG-WaaW, we divide
the workloads based on the degree ranges of
[1, 32], [33, 64], . . . , [1025, 1]. Figure 21 presents
the performance results among these ranges with
varying memory sizes on the Journal graph. As the
workload gets larger, FG-WaaW exhibits a decreasing
performance trend, while FG-BaaW exhibits an in-
creasing performance trend, which is consistent with
our analysis. Another observation is that the choice of
kernel for the same set of vertices is also a↵ected by
memory size. Specifically, when operating with a small
memory capacity (10%|E| and 25%|E|), FG-WaaW

may outperform FG-BaaW even on larger workloads.
This is because when memory is limited, the graph
must be further partitioned, resulting in a smaller
workload for each vertex, which benefits the FG-WaaW

kernel. Conversely, with a large memory capacity
(100%|E| and 1), FG-WaaW only performs better
than FG-BaaW at the smallest degree range.

11.4 CPU or GPU?

The decision between utilizing the CPU or the GPU for
computational tasks hinges on several factors, including
available main memory and the characteristics of the
graph. The performance of IOBufs is notably influenced
by the main memory capacity (M) of the selected hard-
ware (either GPU or CPU) and the size of the graph
(|E|). Additionally, our experiments indicate that the
graph’s density also plays a crucial role in hardware se-
lection. As shown in Figure 22, we conducted an eval-
uation of IOBufs’s execution times on the GPU across
a range of GPU memory sizes, from su�ciently large
down to 10%|E|, and compared these against the CPU
baseline. For the densely connected Orkut graph, char-
acterized by an average degree d of 57, we observed that
the algorithm performed better on the GPU even when
memory M was limited to just 25%|E|. On the other
hand, for the more sparsely connected Delicious graph,
which has an average degree of 6, GPU performance
fell short of CPU performance once M was reduced to
90%|E|.

In theory, given a fixed value of |E|, the computation
workload is proportional to d, while the I/O is propor-
tional to 1

M . To this end, we propose a decision-making
criterion for hardware selection as follows:
(

Choose GPU if d
c4

>
|E|

M ,

Choose CPU otherwise.
(9)

Here, c4 represents a hardware-specific constant. Ac-
cording to our experiments as shown in Figure 22, we
set c4 = 15 in our evaluation. It’s important to note
that this constant is adjustable based on the hardware
environment and does not adhere to a strict universal
standard.

12 From butterfly to general motif

In this section, we first introduce how to count k-
wedges, a kind of motif generalized from butterfly,
under the framework of IOBufs. Additionally, we ex-
plore the potential of adopting the techniques of IOBufs
for counting a broader spectrum of motifs. These in-
clude I/O bound analysis based on semi-witness algo-
rithms, fine-grained parallel execution, and the merge-
sort transformation in GPUs.

12.1 Counting k-wedges

A k-wedge represents a general form of a butterfly, con-
sisting of k interconnected wedges sharing common leaf

Parallelization of Butterfly Counting on Hierarchical Memory 29

1-
32

33
-

64
65

-
96

97
-

12
8

12
9-

16
0

16
1-

19
2

19
3-

22
4

22
5-

25
6

25
7-

28
8

28
9-

32
0

32
1-

35
2

35
3-

38
4

38
5-

41
6

41
7-

44
8

44
9-

48
0

48
1-

51
2

51
3-

54
4

54
5-

57
6

57
7-

60
8

60
9-

64
0

64
1-

67
2

67
3-

70
4

70
5-

73
6

73
7-

76
8

76
9-

80
0

80
1-

83
2

83
3-

86
4

86
5-

89
6

89
7-

92
8

92
9-

96
0

96
1-

99
2

99
3-

10
24

10
25

-
1

Degree range of processed vertex

10�1

100

101

102

T
im

e
(s

)

FG-BaaW FG-WaaW

(a) M = 10%|E|.

1-
32

33
-

64
65

-
96

97
-

12
8

12
9-

16
0

16
1-

19
2

19
3-

22
4

22
5-

25
6

25
7-

28
8

28
9-

32
0

32
1-

35
2

35
3-

38
4

38
5-

41
6

41
7-

44
8

44
9-

48
0

48
1-

51
2

51
3-

54
4

54
5-

57
6

57
7-

60
8

60
9-

64
0

64
1-

67
2

67
3-

70
4

70
5-

73
6

73
7-

76
8

76
9-

80
0

80
1-

83
2

83
3-

86
4

86
5-

89
6

89
7-

92
8

92
9-

96
0

96
1-

99
2

99
3-

10
24

10
25

-
1

Degree range of processed vertex

10�2

10�1

100

101

T
im

e
(s

)

FG-BaaW FG-WaaW

(b) M = 25%|E|.

1-
32

33
-

64
65

-
96

97
-

12
8

12
9-

16
0

16
1-

19
2

19
3-

22
4

22
5-

25
6

25
7-

28
8

28
9-

32
0

32
1-

35
2

35
3-

38
4

38
5-

41
6

41
7-

44
8

44
9-

48
0

48
1-

51
2

51
3-

54
4

54
5-

57
6

57
7-

60
8

60
9-

64
0

64
1-

67
2

67
3-

70
4

70
5-

73
6

73
7-

76
8

76
9-

80
0

80
1-

83
2

83
3-

86
4

86
5-

89
6

89
7-

92
8

92
9-

96
0

96
1-

99
2

99
3-

10
24

10
25

-
1

Degree range of processed vertex

10�2

10�1

100

T
im

e
(s

)

FG-BaaW FG-WaaW

(c) M = |E|.

1-
32

33
-

64
65

-
96

97
-

12
8

12
9-

16
0

16
1-

19
2

19
3-

22
4

22
5-

25
6

25
7-

28
8

28
9-

32
0

32
1-

35
2

35
3-

38
4

38
5-

41
6

41
7-

44
8

44
9-

48
0

48
1-

51
2

51
3-

54
4

54
5-

57
6

57
7-

60
8

60
9-

64
0

64
1-

67
2

67
3-

70
4

70
5-

73
6

73
7-

76
8

76
9-

80
0

80
1-

83
2

83
3-

86
4

86
5-

89
6

89
7-

92
8

92
9-

96
0

96
1-

99
2

99
3-

10
24

10
25

-
1

Degree range of processed vertex

10�3

10�2

10�1

100

T
im

e
(s

)

FG-BaaW FG-WaaW

(d) M =1.

Fig. 21: The performance of FG-BaaW and FG-WaaW on Journal graph, varying the workload.

1|E||E|

2
|E|

3
|E|

4
|E|

5
|E|

6
|E|

7
|E|

8
|E|

9
|E|

10

GPU memory size

10

15

20

T
im

e
(s

)

CPU

GPU

(a) Orkut.

1|E||E|

2
|E|

3
|E|

4
|E|

5
|E|

6
|E|

7
|E|

8
|E|

9
|E|

10

GPU memory size

10

20

T
im

e
(s

)

CPU

GPU

(b) Delicious.

Fig. 22: The performance IOBufs on CPUs vs GPUs. We
configure su�ciently large (i.e. 1) memory on CPUs
and use the performance as baseline.

vertices. In this context, the butterfly is precisely a 2-
wedge. The counting of k-wedges is crucial for analyz-
ing community structures [4,38,45], especially within
bipartite graphs [46,79].

Before delving into k-wedge counting, it’s instruc-
tive to review butterfly counting via wedge enumera-
tion. For any two vertices, IOBufs calculates the number
of wedges connecting them. If n wedges exist between
these vertices, the resulting butterfly count is deter-
mined by

�n
2

�
.

Similarly, we can adapt the calculation as
�n
k

�
for

counting k wedges. It’s important to note that the strat-
egy of decomposing the counting process into incremen-
tal steps, as given in line 3 of Algorithm 1, remains
e↵ective. This is supported by the following equation:

✓
n

k

◆
=

n�1X

i=0

�i!i+1, where

�i!i+1 =

✓
i

k

◆
�

✓
i + 1

k

◆
=

✓
i

k � 1

◆
.

(10)

We simply increment the k-wedge count by
�
H(u,w)

k�1

�
,

each time when updating the wedge count in H(u, w).
All techniques in IOBufs are thus seamlessly applicable
to k-wedge counting.

Empirical study. We conduct an empirical study to
compare the performance of counting k-wedges and
butterflies. Utilizing the Delicious dataset and adher-
ing to the experimental setup described in Section 9, we
present our findings in Figure 23. Regarding execution
performance, there demonstrates a slightly increasing
trend with the increment of k, which is consistent with
the computational complexity of calculating

�n
k

�
. The

number of k-wedge increases exponentially as k grows,
and it can overflow a 64-bit integer when k > 5.

30 Zhibin Wang et al.

1 2 3 4 5
k in k-wedge

10�1

100

101

102

T
im

e
(s

)

M = 10%|E|

M = 25%|E|

M = |E|

M = 1

(a) Wall clock time.

1 2 3 4 5
k in k-wedge

1012

1015

1018

#
k-

w
ed

ge
s

(b) #k-wedges.

Fig. 23: The performance and the number of k-wedges
in the Delicious dataset.

A

B

C

D

E
A

B

C

B

C

D

Edecompose
⋈
key

key

Fig. 24: The house motif: its decomposition and the
process of counting via join operations.

12.2 Counting general motifs

While IOBufs is initially designed with the specific pur-
pose of butterfly counting, we also explore the possibili-
ties of adopting IOBufs’s techniques to counting general
motifs.

Semi-witnessing. Semi-witnessing algorithms present
a novel perspective for reducing I/O complexity in motif
counting, which suggests that fully witnessing a motif
is not a prerequisite for its counting, thereby decreas-
ing I/O complexities by avoiding the materialization of
unnecessary intermediate data. In order to apply semi-
witness algorithms, it is crucial that the motif can be
formed by joining subgraphs, and each subgraph con-
tains free vertices that do not serve as join keys. For
example, in the house motif shown in Figure 24, given
the triangle (A, B, C) and butterfly (B, C, D, E) that
are joined by keys B and C to form the motif, the
vertices A, D, and E are now the free vertices. As a
result, the counting of house motifs can benefit from
the semi-witnessing algorithms, which require witness-
ing the triangles and butterflies instead of the whole
structure.

It’s obvious that there are di↵erent ways of decom-
posing the motifs into subgraphs for joining. Exploring
how to determine the optimal decomposition strategy,
such that the resulting semi-witnessing algorithms align
with the lowest possible I/O complexities, is a promis-
ing future direction.

Fine-grained parallelization strategy. Given an
optimal (regarding I/O bound) decomposition of the
motif, where the join keys are consisted of k vertices,

we can model the motif counting problem as a task
of Tmc{V ⇥ · · · ⇥ V| {z }

k times

}. For example, the house counting

problem can be modeled as Tmc{V ⇥ V }, where the
task aims to count the number of triangles and butter-
flies joined by each pair of vertices B and C. Observing
that intermediate results in motif counting may exceed
the size of the input graph by a considerable margin [38,
60], the fine-grained parallelism of FG can be employed
to address this issue by partitioning the task as well as
the intermediate results into smaller parts to meet the
memory constraints.

We also notice several GPU graph mining sys-
tems [12,89,84,25] adopt the DFS traversal for motif
counting to control the intermediate memory usage.
However, these systems are founded on enumeration-
based algorithms, which may not be optimal for count-
ing motifs with high complexities. It will be interesting
to explore how the fine-grained parallelization strategy
can be integrated into these systems.

Merge-sort transformation. The challenge of count-
ing motifs often involves dealing with substantial mem-
ory demands to store intermediate results, a situation
that becomes particularly acute in GPU environments
where memory is limited. To mitigate these memory
constraints, the merge-sort transformation o↵ers a vi-
able solution in two cases:

– Worst-case optimal join algorithms [53]: These
algorithms, which are crucial in motif counting [38,
87], rely on the intersection of multiple neighbor
lists. The merge-sort transformation helps reduce
memory consumption during the process of the list
intersection.

– Decomposition into symmetrical subgraphs:
For motifs that can be broken down into symmet-
rical (more formally, isomorphic) subgraphs (e.g.,
the butterfly can be decomposed into two wedges
that are identical), we can do motif counting by par-
tially counting the subgraphs, and then leverage the
merge-sort transformation to e�ciently “merge” the
results.

13 Conclusion

We finally summarize the process for selecting the op-
timal configurations for IOBufs, considering both graph
characteristics and hardware specifications. The pro-
cess, as shown in Figure 25, is unfolded in three steps:

– Hardware Selection: The initial decision between
utilizing CPUs or GPUs is guided by Equation 9.

Parallelization of Butterfly Counting on Hierarchical Memory 31

1. Hardware selection

2. Algorithm selection

3. Parameter configuration

!̅
#!
> |&|

'"#$

NoYes

Configure ' according to given hardware

CPUGPU

!̅ > #% '

NoYes

IObufs-edgeIObufs-wedge

Configure (,*
according to
Solver of
Equation 8

Configure (
according to
Table 2

Fig. 25: The process for selecting the optimal configu-
rations for IOBufs.

– Algorithm Selection: Next, the choice between
algorithm variants, specifically IOBufs-edge and
IOBufs-wedge, is made following the guidelines in
Section 6.4.

– Parameter Configuration: If IOBufs-edge is se-
lected, parameters such as p and q are configured
using the solver introduced in Section 7.2. For GPU
configurations, the kernel choice between FG-BaaW
or FG-WaaW is adaptively made based on vertex
degree, as elaborated in Section 8.4. Otherwise, if
IOBufs-wedge is selected, parameter p is configured
according to Table 2.

To conclude, we study the I/O-e�cient algorithm
for butterfly counting at scale in this paper. Observing
that it su�ces to witness only a subgraph rather than
the whole structure in the main memory for counting
butterflies, we propose the semi-witnessing algorithm
and prove that no semi-witnessing algorithm for but-

terfly counting can guarantee o(min(|E|
2

MB ,
|E||V |
p
MB

)) I/Os.
We then develop the IOBufs algorithm that can arrive at
the I/O lower bound. Finally, we present a framework
PIOBufs to parallelize the algorithm as well as a fine-
grained technique to tradeo↵ the I/O and computation
e�ciency. The PIOBufs is further extended to GPUs.
The experimental results have verified the e↵ectiveness
of all our proposed techniques, which makes IOBufs out-
perform the state of the art by orders of magnitude.

14 Compliance with Ethical Standards

Disclosure of Potential Conflicts of Interest. The
authors declare that they have no conflict of interest.

Research Involving Human Participants and/or
Animals. This article does not contain any studies
with human participants or animals performed by any
of the authors.

Informed consent. As this study does not involve hu-
man participants, informed consent is not applicable.

References

1. cgroup. https://www.kernel.org/doc/Documentation/
cgroup-v2.txt

2. Cuda toolkit. URL https://developer.nvidia.com/
cuda-toolkit

3. Aksoy, S.G., Kolda, T.G., Pinar, A.: Measuring and
modeling bipartite graphs with community structure.
Journal of Complex Networks 5(4), 581–603 (2017)

4. Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Be-
heshti, S.M.R., Bertino, E., Foo, N.: Collusion detection
in online rating systems. In: Web Technologies and Ap-
plications: 15th Asia-Pacific Web Conference, APWeb
2013, Sydney, Australia, April 4-6, 2013. Proceedings
15, pp. 196–207. Springer (2013)

5. Ammar, K., McSherry, F., Salihoglu, S., Joglekar,
M.: Distributed evaluation of subgraph queries using
worstcase optimal lowmemory dataflows. arXiv preprint
arXiv:1802.03760 (2018)

6. Bhattarai, B., Liu, H., Huang, H.H.: Ceci: Compact em-
bedding cluster index for scalable subgraph matching.
In: Proceedings of the 2019 International Conference on
Management of Data, pp. 1447–1462 (2019)

7. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: E�cient
subgraph matching by postponing cartesian products.
In: Proceedings of the 2016 International Conference on
Management of Data, pp. 1199–1214 (2016)

8. Boldi, P., Marino, A., Santini, M., Vigna, S.: BUbiNG:
Massive Crawling for the Masses. In: WWW, pp. 227–
228 (2014)

9. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered
Label Propagation: A MultiResolution Coordinate-Free
Ordering for Compressing Social Networks. In: WWW,
pp. 587–596. ACM Press (2011)

10. Boldi, P., Vigna, S.: The WebGraph Framework I: Com-
pression Techniques. In: WWW, pp. 595–601. ACM
Press (2004)

11. Chen, H., Li, X., Huang, Z.: Link prediction approach
to collaborative filtering. In: Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries
(JCDL’05), pp. 141–142. IEEE (2005)

12. Chen, X., et al.: E�cient and scalable graph pattern
mining on {GPUs}. In: 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pp. 857–877 (2022)

13. Chiba, N., Nishizeki, T.: Arboricity and subgraph list-
ing algorithms. SIAM J. Comput. 14(1), 210–223
(1985). DOI 10.1137/0214017. URL https://doi.org/
10.1137/0214017

14. Clarke, C.L., Craswell, N., Soboro↵, I.: Overview of the
trec 2009 web track. Tech. rep., WATERLOO UNIV
(ONTARIO) (2009)

15. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.:
Anonymizing bipartite graph data using safe groupings.
Proceedings of the VLDB Endowment 1(1), 833–844
(2008)

32 Zhibin Wang et al.

16. Dhillon, I.S.: Co-clustering documents and words using
bipartite spectral graph partitioning. In: Proceedings
of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’01,
p. 269–274. Association for Computing Machinery, New
York, NY, USA (2001). DOI 10.1145/502512.502550.
URL https://doi.org/10.1145/502512.502550

17. DIMACS: Dimacs challenge.
Http://dimacs.rutgers.edu/Challenges/

18. Finnerty, E., Sherer, Z., Liu, H., Luo, Y.: Dr. bfs: Data
centric breadth-first search on fpgas. In: 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp.
1–6 (2019)

19. Gibson, D., Kumar, R., Tomkins, A.: Discovering large
dense subgraphs in massive graphs. In: Proceedings of
the 31st International Conference on Very Large Data
Bases, VLDB ’05, p. 721–732. VLDB Endowment (2005)

20. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin,
C.: {PowerGraph}: Distributed {Graph-Parallel} com-
putation on natural graphs. In: 10th USENIX sympo-
sium on operating systems design and implementation
(OSDI 12), pp. 17–30 (2012)

21. He, H., Singh, A.K.: Graphs-at-a-time: query language
and access methods for graph databases. In: Proceed-
ings of the 2008 ACM SIGMOD international conference
on Management of data, pp. 405–418 (2008)

22. Hoang, L., Jatala, V., Chen, X., Agarwal, U., Dathathri,
R., Gill, G., Pingali, K.: Disttc: High performance dis-
tributed triangle counting. In: 2019 IEEE High Per-
formance Extreme Computing Conference (HPEC), pp.
1–7. IEEE (2019)

23. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accel-
erating CUDA Graph Algorithms at Maximum Warp.
Acm Sigplan Notices 46(8), 267–276 (2011)

24. Hong, S., Oguntebi, T., Olukotun, K.: E�cient paral-
lel graph exploration on multi-core cpu and gpu. In:
2011 International Conference on Parallel Architectures
and Compilation Techniques, pp. 78–88 (2011). DOI
10.1109/PACT.2011.14

25. Hu, L., Zou, L.: A gpu-based graph pattern mining sys-
tem. In: Proceedings of the 31st ACM International
Conference on Information & Knowledge Management,
pp. 4867–4871 (2022)

26. Hu, X., Chiueh, T.c., Shin, K.G.: Large-scale malware
indexing using function-call graphs. In: Proceedings
of the 16th ACM Conference on Computer and Com-
munications Security, CCS ’09, p. 611–620. Associa-
tion for Computing Machinery, New York, NY, USA
(2009). DOI 10.1145/1653662.1653736. URL https:
//doi.org/10.1145/1653662.1653736

27. Hu, X., Tao, Y., Chung, C.W.: Massive graph trian-
gulation. In: Proceedings of the 2013 ACM SIGMOD
international conference on Management of data, pp.
325–336 (2013)

28. Hu, X., Tao, Y., Chung, C.W.: I/o-e�cient algorithms
on triangle listing and counting. ACM Transactions on
Database Systems (TODS) 39(4), 1–30 (2014)

29. Hu, Y., Liu, H., Huang, H.H.: Tricore: Parallel Triangle
Counting on GPUs. In: SC, pp. 171–182. IEEE (2018)

30. Huang, S., El-Hadedy, M., Hao, C., Li, Q., Mailthody,
V.S., Date, K., Xiong, J., Chen, D., Nagi, R., Hwu,
W.m.: Triangle Counting and Truss Decomposition us-
ing FPGA. In: HPEC, pp. 1–7. IEEE (2018)

31. Jagadish, H.V.: A compression technique to materialize
transitive closure. ACM Trans. Database Syst. 15(4),
558–598 (1990). DOI 10.1145/99935.99944. URL https:
//doi.org/10.1145/99935.99944

32. Khorasani, F., Vora, K., Gupta, R., Bhuyan, L.N.:
Cusha: Vertex-centric graph processing on gpus. In:
Proceedings of the 23rd International Symposium on
High-Performance Parallel and Distributed Comput-
ing, HPDC ’14, p. 239–252. Association for Comput-
ing Machinery, New York, NY, USA (2014). DOI
10.1145/2600212.2600227. URL https://doi.org/10.
1145/2600212.2600227

33. Kunegis, J.: Konect: the koblenz network collection.
In: Proceedings of the 22nd international conference on
world wide web, pp. 1343–1350 (2013)

34. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter,
a Social Network or a News Media? In: WWW, pp. 591–
600 (2010)

35. Kyrola, A., Blelloch, G., Guestrin, C.:
{GraphChi}:{Large-Scale} graph computation on
just a {PC}. In: 10th USENIX symposium on operat-
ing systems design and implementation (OSDI 12), pp.
31–46 (2012)

36. Lai, L., Qin, L., Lin, X., Chang, L.: Scalable subgraph
enumeration in mapreduce. Proceedings of the VLDB
Endowment 8(10), 974–985 (2015)

37. Lai, L., Qing, Z., Yang, Z., Jin, X., Lai, Z., Wang, R.,
Hao, K., Lin, X., Qin, L., Zhang, W., et al.: Distributed
subgraph matching on timely dataflow. Proceedings of
the VLDB Endowment 12(10), 1099–1112 (2019)

38. Lai, L., Yang, Y., Wang, Z., Liu, Y., Ma, H., Shen, S.,
Lyu, B., Zhou, X., Yu, W., Qian, Z., et al.: {GLogS}:
Interactive graph pattern matching query at large
scale. In: 2023 USENIX Annual Technical Conference
(USENIX ATC 23), pp. 53–69 (2023)

39. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos,
C., Ghahramani, Z.: Kronecker graphs: an approach to
modeling networks. Journal of Machine Learning Re-
search 11(2) (2010)

40. Li, H., Kong, F., Yu, J.: Secure outsourcing for normal-
ized cuts of large-scale dense graph in internet of things.
IEEE Internet of Things Journal pp. 1–1 (2021). DOI
10.1109/JIOT.2021.3138103

41. Lind, P.G., Gonzalez, M.C., Herrmann, H.J.: Cycles
and clustering in bipartite networks. Physical review
E 72(5), 056,127 (2005)

42. Liu, C., Shao, Z., Li, K., Wu, M., Chen, J., Li, R.,
Liao, X., Jin, H.: Scalabfs: A scalable bfs accelerator
on fpga-hbm platform. In: The 2021 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate
Arrays, FPGA ’21, p. 147. Association for Comput-
ing Machinery, New York, NY, USA (2021). DOI
10.1145/3431920.3439463. URL https://doi.org/10.
1145/3431920.3439463

43. Liu, H., Huang, H.H.: Enterprise: breadth-first graph
traversal on gpus. In: Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 1–12 (2015)

44. Liu, H., Huang, H.H.: {SIMD-X}: Programming and
processing of graph algorithms on {GPUs}. In: 2019
USENIX Annual Technical Conference (USENIX ATC
19), pp. 411–428 (2019)

45. Liu, J., Wang, W.: Op-cluster: Clustering by tendency
in high dimensional space. In: Third IEEE international
conference on data mining, pp. 187–194. IEEE (2003)

46. Lyu, B., Qin, L., Lin, X., Zhang, Y., Qian, Z., Zhou, J.:
Maximum biclique search at billion scale. Proceedings
of the VLDB Endowment (2020)

47. Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M.,
Zhou, L., Dai, Y.: Neugraph: Parallel deep neural
network computation on large graphs. In: 2019

Parallelization of Butterfly Counting on Hierarchical Memory 33

USENIX Annual Technical Conference (USENIX ATC
19), pp. 443–458. USENIX Association, Renton, WA
(2019). URL https://www.usenix.org/conference/
atc19/presentation/ma

48. Mai, S.T., Dieu, M.S., Assent, I., Jacobsen, J., Kris-
tensen, J., Birk, M.: Scalable and interactive graph clus-
tering algorithm on multicore cpus. In: 2017 IEEE 33rd
International Conference on Data Engineering (ICDE),
pp. 349–360 (2017). DOI 10.1109/ICDE.2017.94

49. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C.,
Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system
for large-scale graph processing. In: Proceedings of the
2010 ACM SIGMOD International Conference on Man-
agement of data, pp. 135–146 (2010)

50. Melckenbeeck, I., Audenaert, P., Van Parys, T., Van
De Peer, Y., Colle, D., Pickavet, M.: Optimising orbit
counting of arbitrary order by equation selection. BMC
bioinformatics 20(1), 1–13 (2019)

51. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P.,
Bhattacharjee, B.: Measurement and analysis of online
social networks. In: Proceedings of the 7th ACM SIG-
COMM conference on Internet measurement, pp. 29–42
(2007)

52. Muthukrishnan, S., et al.: Data streams: Algorithms and
applications. Foundations and Trends® in Theoretical
Computer Science 1(2), 117–236 (2005)

53. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case op-
timal join algorithms. Journal of the ACM (JACM)
65(3), 1–40 (2018)

54. Nodehi Sabet, A.H., Qiu, J., Zhao, Z.: Tigr: Trans-
forming irregular graphs for gpu-friendly graph process-
ing. In: Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, p.
622–636. Association for Computing Machinery, New
York, NY, USA (2018). DOI 10.1145/3173162.3173180.
URL https://doi.org/10.1145/3173162.3173180

55. Pagh, R., Silvestri, F.: The input/output complexity of
triangle enumeration. In: Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pp. 224–233 (2014)

56. Pandey, S., Wang, Z., Zhong, S., Tian, C., Zheng, B.,
Li, X., Li, L., Hoisie, A., Ding, C., Li, D., et al.: Trust:
Triangle counting reloaded on gpus. IEEE Transactions
on Parallel and Distributed Systems 32(11), 2646–2660
(2021)

57. Park, H.M., Chung, C.W.: An e�cient mapreduce algo-
rithm for counting triangles in a very large graph. In:
Proceedings of the 22nd ACM international conference
on Information & Knowledge Management, pp. 539–548
(2013)

58. Pinar, A., Seshadhri, C., Vishal, V.: Escape: E�ciently
counting all 5-vertex subgraphs. In: Proceedings of the
26th international conference on world wide web, pp.
1431–1440 (2017)

59. Polak, A.: Counting Triangles in Large Graphs on GPU.
In: IPDPSW, pp. 740–746. IEEE (2016)

60. Qian, Z., Min, C., Lai, L., Fang, Y., Li, G., Yao, Y.,
Lyu, B., Zhou, X., Chen, Z., Zhou, J.: GAIA: A sys-
tem for interactive analysis on distributed graphs us-
ing a High-Level language. In: 18th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 21), pp. 321–335. USENIX Association
(2021). URL https://www.usenix.org/conference/
nsdi21/presentation/qian-zhengping

61. Robins, G., Alexander, M.: Small worlds among inter-
locking directors: Network structure and distance in bi-

partite graphs. Computational & Mathematical Orga-
nization Theory 10(1), 69–94 (2004)

62. Rossi, R.A., Ahmed, N.K.: The network data repository
with interactive graph analytics and visualization. In:
AAAI (2015). URL https://networkrepository.com

63. Roy, A., Bindschaedler, L., Malicevic, J., Zwaenepoel,
W.: Chaos: Scale-out graph processing from secondary
storage. In: Proceedings of the 25th Symposium on Op-
erating Systems Principles, pp. 410–424 (2015)

64. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream:
Edge-centric graph processing using streaming parti-
tions. In: Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, pp. 472–488
(2013)

65. Sanei-Mehri, S.V., Sariyuce, A.E., Tirthapura, S.: But-
terfly counting in bipartite networks. In: Proceedings
of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2150–2159
(2018)

66. Sanei-Mehri, S.V., Zhang, Y., Sariyüce, A.E., Tirtha-
pura, S.: Fleet: butterfly estimation from a bipartite
graph stream. In: Proceedings of the 28th ACM In-
ternational Conference on Information and Knowledge
Management, pp. 1201–1210 (2019)

67. Shi, J., Shun, J.: Parallel algorithms for butterfly com-
putations. In: Symposium on Algorithmic Principles of
Computer Systems, pp. 16–30. SIAM (2020)

68. Shi, T., Zhai, J., Wang, H., Chen, Q., Zhai, M., Hao, Z.,
Yang, H., Chen, W.: Graphset: High performance graph
mining through equivalent set transformations. In: Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analy-
sis, pp. 1–14 (2023)

69. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph pro-
cessing framework for shared memory. In: Proceed-
ings of the 18th ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming, pp. 135–146
(2013)

70. Su, X., Khoshgoftaar, T.M.: A survey of collaborative
filtering techniques. Adv. in Artif. Intell. 2009 (2009).
DOI 10.1155/2009/421425. URL https://doi.org/10.
1155/2009/421425

71. Valiant, L.G.: A bridging model for parallel computa-
tion. Commun. ACM 33(8), 103–111 (1990). DOI
10.1145/79173.79181. URL https://doi.org/10.1145/
79173.79181

72. Vora, K.: {LUMOS}:{Dependency-Driven} disk-based
graph processing. In: 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pp. 429–442 (2019)

73. Vora, K., Xu, G., Gupta, R.: Load the edges you need:
A generic {I/O} optimization for disk-based graph pro-
cessing. In: 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pp. 507–522 (2016)

74. Vuppalapati, M., Miron, J., Agarwal, R., Truong, D.,
Motivala, A., Cruanes, T.: Building an elastic query en-
gine on disaggregated storage. In: 17th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 20), pp. 449–462. USENIX Association,
Santa Clara, CA (2020). URL https://www.usenix.
org/conference/nsdi20/presentation/vuppalapati

75. Wahib, M., Maruyama, N.: Scalable kernel fusion for
memory-bound gpu applications. In: SC’14: Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 191–
202. IEEE (2014)

76. Wang, J., Fu, A.W.C., Cheng, J.: Rectangle counting
in large bipartite graphs. In: 2014 IEEE International
Congress on Big Data, pp. 17–24. IEEE (2014)

34 Zhibin Wang et al.

77. Wang, K., Hu, Y., Lin, X., Zhang, W., Qin, L., Zhang,
Y.: A cohesive structure based bipartite graph analytics
system. In: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management,
pp. 4799–4803 (2021)

78. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Ver-
tex priority based butterfly counting for large-scale bi-
partite networks. Proceedings of the VLDB Endowment
12(10), 1139–1152 (2019)

79. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.:
E�cient bitruss decomposition for large-scale bipartite
graphs. In: 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pp. 661–672. IEEE (2020)

80. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Ac-
celerated butterfly counting with vertex priority on bi-
partite graphs. The VLDB Journal pp. 1–25 (2022)

81. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: To-
wards e�cient solutions of bitruss decomposition for
large-scale bipartite graphs. The VLDB Journal 31(2),
203–226 (2022)

82. Wang, K., Zhang, W., Zhang, Y., Qin, L., Zhang,
Y.: Discovering significant communities on bipartite
graphs: An index-based approach. IEEE Transactions
on Knowledge and Data Engineering (2021)

83. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Ri↵el, A.,
Owens, J.D.: Gunrock: A high-performance graph pro-
cessing library on the gpu. SIGPLAN Not. 51(8) (2016).
DOI 10.1145/3016078.2851145. URL https://doi.org/
10.1145/3016078.2851145

84. Wang, Z., Meng, Z., Li, X., Lin, X., Zheng, L., Tian,
C., Zhong, S.: Smog: Accelerating subgraph matching
on gpus. In: 2023 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7. IEEE (2023)

85. Wu, B., Zhao, Z., Zhang, E.Z., Jiang, Y., Shen, X.:
Complexity analysis and algorithm design for reorga-
nizing data to minimize non-coalesced memory accesses
on gpu. ACM SIGPLAN Notices 48(8), 57–68 (2013)

86. Xu, Q., Zhang, F., Yao, Z., Lu, L., Du, X., Deng, D., He,
B.: E�cient load-balanced butterfly counting on gpu.
Proceedings of the VLDB Endowment 15(11), 2450–
2462 (2022)

87. Yang, Z., Lai, L., Lin, X., Hao, K., Zhang, W.: Huge:
An e�cient and scalable subgraph enumeration system.
In: Proceedings of the 2021 International Conference on
Management of Data, pp. 2049–2062 (2021)

88. Yaşar, A., Rajamanickam, S., Berry, J., Wolf, M.,
Young, J.S., ÇatalyÜrek, Ü.V.: Linear Algebra-Based
Triangle Counting via Fine-Grained Tasking on Hetero-
geneous Environments: (Update on Static Graph Chal-
lenge). In: HPEC, pp. 1–4 (2019)

89. Zeng, L., Zou, L., Özsu, M.T., Hu, L., Zhang, F.:
Gsi: Gpu-friendly subgraph isomorphism. In: 2020
IEEE 36th International Conference on Data Engineer-
ing (ICDE), pp. 1249–1260. IEEE (2020)

90. Zhang, F., Chen, D., Wang, S., Yang, Y., Gan, J.: Scal-
able approximate butterfly and bi-triangle counting for
large bipartite networks. Proceedings of the ACM on
Management of Data 1(4), 1–26 (2023)

91. Zhang, H., Yu, J.X., Zhang, Y., Zhao, K., Cheng,
H.: Distributed subgraph counting: a general approach.
Proceedings of the VLDB Endowment 13(12), 2493–
2507 (2020)

92. Zhang, J., Li, J.: Degree-aware hybrid graph traver-
sal on fpga-hmc platform. In: Proceedings of the
2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’18, p. 229–238. As-
sociation for Computing Machinery, New York, NY,

USA (2018). DOI 10.1145/3174243.3174245. URL
https://doi.org/10.1145/3174243.3174245

93. Zhao, C., Guan, Y.: A graph-based investigation of bit-
coin transactions. In: G. Peterson, S. Shenoi (eds.) Ad-
vances in Digital Forensics XI, pp. 79–95. Springer In-
ternational Publishing, Cham (2015)

94. Zhao, G., Wang, K., Zhang, W., Lin, X., Zhang, Y.,
He, Y.: E�cient computation of cohesive subgraphs in
uncertain bipartite graphs. In: 2022 IEEE 38th Inter-
national Conference on Data Engineering (ICDE), pp.
2333–2345. IEEE (2022)

95. Zhao, T., Malir, M., Jiang, M.: Actionable objective op-
timization for suspicious behavior detection on large bi-
partite graphs. In: 2018 IEEE International Conference
on Big Data (Big Data), pp. 1248–1257 (2018). DOI
10.1109/BigData.2018.8621975

96. Zhou, A., Wang, Y., Chen, L.: Butterfly counting on
uncertain bipartite graphs. Proceedings of the VLDB
Endowment 15(2), 211–223 (2021)

97. Zhu, Q., Zheng, J., Yang, H., Chen, C., Wang, X.,
Zhang, Y.: Hurricane in bipartite graphs: The lethal
nodes of butterflies. In: 32nd International Conference
on Scientific and Statistical Database Management, SS-
DBM 2020. Association for Computing Machinery, New
York, NY, USA (2020). DOI 10.1145/3400903.3400916.
URL https://doi.org/10.1145/3400903.3400916

98. Zhu, R., Zou, Z., Li, J.: Fast rectangle counting on mas-
sive networks. In: 2018 IEEE International Conference
on Data Mining (ICDM), pp. 847–856. IEEE (2018)

99. Zhu, X., Han, W., Chen, W.: {GridGraph}:{Large-
Scale} graph processing on a single machine using 2-
level hierarchical partitioning. In: 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pp. 375–386
(2015)

100. Zweig, K.A., Kaufmann, M.: A systematic approach to
the one-mode projection of bipartite graphs. Social Net-
work Analysis and Mining 1(3), 187–218 (2011)

