
PatMat: A Distributed Pattern Matching Engine with Cypher
Kongzhang Hao
UNSW, Sydney

khao@cse.unsw.edu.au

Zhengyi Yang
UNSW, Sydney

zyang@cse.unsw.edu.au

Longbin Lai
UNSW, Sydney

llai@cse.unsw.edu.au

Zhengmin Lai
ECNU, Shanghai, China
zmlai@stu.ecnu.edu.cn

Xin Jin
ECNU, Shanghai, China
xinjin@stu.ecnu.edu.cn

Xuemin Lin
UNSW, Sydney

lxue@cse.unsw.edu.au

ABSTRACT
Graph pattern matching is one of the most fundamental problems
in graph database and is associated with a wide spectrum of appli-
cations. Due to its computational intensiveness, researchers have
primarily devoted their efforts to improving the performance of the
algorithm while constraining the graphs to have singular labels on
vertices (edges) or no label. Whereas in practice graphs are typically
associated with rich properties, thus the main focus in the industry
is instead on powerful query languages that can express a sufficient
number of pattern matching scenarios. We demo PatMat in this
work to glue together the academic efforts on performance and
the industrial efforts on expressiveness. To do so, we leverage the
state-of-the-art join-based algorithms in the distributed contexts
and Cypher query language - the most widely-adopted declarative
language for graph pattern matching. The experiments demonstrate
how we are capable of turning complex Cypher semantics into a
distributed solution with high performance.

KEYWORDS
Graph pattern matching; Cypher; distributed processing; join opti-
mization; graph database
ACM Reference Format:
KongzhangHao, Zhengyi Yang, Longbin Lai, Zhengmin Lai, Xin Jin, andXuemin
Lin. 2019. PatMat: A Distributed Pattern Matching Engine with Cypher. In
The 28th ACM International Conference on Information and Knowledge Man-
agement (CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3357384.3357840

1 INTRODUCTION
We study graph pattern matching in this work as a problem to
find all embeddings (matches) of a small pattern graph in a very
large graph database (data graph). Subgraph matching is one of the
most fundamental problems in graph database and is associated
with a wide spectrum of applications in the areas of finance, e-
commerce, cyber security, bioinformatics, chemistry, social science,
etc. Below we present two real-life scenarios that rely on graph
pattern matching.
Scenario I. Figure 1a demonstrates a credit-card fraud case in
a third-party payment network [16], in which the accounts are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357840

transfer

Criminal Merchantcredit

pay

bank

transfer

transfer

transfer

transfer

Agent AAgent B

Agent C

(a) Credit-card fraud

Buyer A

Buyer B

Buyer C

Product 1

Product 2

Product 3

Product 4

(b) Recommendation
Figure 1: The real-life pattern matching scenarios.

vertices and the transactions in between are edges. In this case,
“Criminal” attempts to cash out short-term credits from the bank. To
do so, the “Criminal” conspires with a “Merchant” (online shopping)
to fake a buying using the credits. Once the “Merchant” receives
money from the bank, he/she transfers this money back to the
“Criminal” via three intermediate agents. We can detect such fraud
by querying a 5-cycle pattern graph in the payment network.
Scenario II.An online shopping site wants to recommend products
to the buyers using the strategy presented in Figure 1b. In this case,
three buyers have all purchased “Product 1-3” recently, while only
“Buyer A” and “Buyer B” have bought “Product 4”. It is reasonable
to infer that “Buyer C” may also be interested in “Product 4”, and
recommendation is made accordingly [11]. We can identify all such
links for recommendation by querying a “3-4” bi-clique (3 buyers
connects to all 4 products at the same time) with one missing edge
as a pattern graph in the buyer-product network.
Motivations. Despite its usefulness, graph pattern matching typi-
cally involves a computation-intensive operation, known as sub-
graph isomorphism [18]. In addition, data graph nowadays is grow-
ing beyond the capacity of one single machine. Therefore people are
seeking efficient and scalable algorithms in the distributed context.
Most such efforts model graph pattern matching as joins of edge ta-
bles, and the problem is accordingly turned into solving the optimal
join plan that minimize the communication cost [2, 3, 9, 15, 19]. The
state-of-the-art algorithms are capable of handling graph pattern
matching with trillions of results in small-scale (∼10 machines)
cluster, and they show promising trends of scalability. However,
these works were proposed without considering node and edge
labels in order to better benchmark the performance. Although
there are works that handle graph with labels [4, 6], they were
typically developed in the sequential setting and were only applied
to graphs whose vertices (edges) only contained singular labels.

Moreover, people typically adopt property graph [17] model in
practice, where each vertex and edge takes arbitrary number of
properties (attributes) of various data types. For example, in Fig-
ure 1a, each vertex and edge must have a “label” property. Vertices

https://doi.org/10.1145/3357384.3357840
https://doi.org/10.1145/3357384.3357840

Persistent	distributed	storage

Cypher	parser

Logical	plan	generator	&	optimiser

ResultsDistributed	runtime	on	Timely

Graph
Structure

Graph
Structure

Graph
Structure

Property
Schema

Property
Schema

Property
Schema

Data	statistics

In-memory
Cache
...

Cypher
(a)-[:LIKES]->(b)

Figure 2: The PatMat’s system architecture.

with “person” label can contain personalized profile and edges with
“transfer” label can have a “time” slot to mark when the transaction
happens. We can use such rich semantics to reduce false positives.
For instance, one can limit the money transferring in the pattern
to happen within a certain time span (e.g. 10 hours), and among
people whose age is between 18 and 40. Apparently, we cannot di-
rectly benefit from the efforts in academia to solve pattern matching
problems with the property graph model.

Meanwhile, people from the industry pioneer the development
of declarative languages for graph pattern matching to express the
rich semantics accompanied with property graph model. Cypher
1 is designed by Neo4j to visually recognize the graph patterns in
data, and it is simple to learn and master. Neo4j is now working
to standardize the open-sourced Cypher language 2, making it the
most widely adopted graph querying language. As a result, we use
Cypher as the query language in this work. Although Cypher is
powerful in expressiveness, there lacks a system that meanwhile
offers efficient and scalable backend and expressive Cypher fron-
tend for graph pattern matching. Neo4j natively supports Cypher,
but its free version runs in sequential context and cannot scale
to large-scale graphs. Graphflow [8] extends Cypher to support
dynamic query, but it is still developed as a single-machine solution
with limited scalability. Morpheus 3 and Gradoop [7] are extensions
that support Cypher query in Spark [20] and Flink [5] respectively.
But their performance is not satisfactory due to the innate cost of
the base systems.

These motivate us to propose PatMat to glue together the aca-
demic efforts on performance and the industrial efforts on expres-
siveness for graph pattern matching. We compare PatMat with
Neo4j in the sequential context, and Morpheus and Gradoop in the
distributed context to show the efficiency of PatMat.
1https://neo4j.com/developer/cypher-query-language/
2http://www.opencypher.org/
3https://github.com/opencypher/morpheus#morpheus-cypher-for-apache-spark

2 SYSTEM OVERVIEW
Figure 2 demonstrates the architecture of PatMat, where the arrows
indicate the direction of data dependency. On the upper layer, we
allow user to specify query using Cypher language, which is parsed
into PatMat’s internal representation consisting of structure infor-
mation and property constraints using Cypher parser (Section 2.1).
Logical plan generator (Section 2.2) is responsible to generate opti-
mal plan based on the state-of-the-art algorithms, more specifically
BinaryJoin [9] andWOptJoin [3]. A cost estimator is deployed to
choose whether to use BinaryJoin orWOptJoin, or a hybrid strat-
egy [1] (as one of the future works). Then the execution plan will
be scheduled on the layer of distributed runtime, which is currently
based on the Timely dataflow system [13], a general-purpose data-
parallel distributed engine. On the bottom layer, the graph data
(structure and properties) is persisted in a distributed storage (e.g.
HDFS, TiKV 4). Note that the storage layer also interacts with logi-
cal plan generator by offering data statistics for more accurate cost
estimation, and maintains the results from the “distributed runtime”
for further use. Between distributed runtime and storage layers, we
place an in-memory cache in each machine of the cluster for quick
access of graph structure and property schema (Section 2.3).

2.1 Cypher Parser
We implement Cypher parser to transform user-specified Cypher
query into our internal representation of pattern graph structure
and property constraints. Cypher parser firstly uses libcypher-parser
5 to convert the Cypher query into a syntax tree, which will further
be parsed into structure information and property constraints. The
structure is simply maintained as lists of query vertices and edges,
where query vertices are identified with continuous numbering,
and edges are labelled with the source and target vertices’ ids.

Property constraints are extracted and stored as an expression
tree, which is a binary tree with four types of tree node, namely
Constant, Variable, Predicate and Arithmetic. Constant and
Variable must be tree leaves. Predicate and Arithmetic are
used to define operations between the left and right child in the
tree, where Predicate defines logical operations such as >, <, ≤, ≥
,∧,∨, etc., and Arithmetic defines arithmetic operations such as
+,−, ∗, / etc. To filter a vertex using expression tree, we recursively
get the value of the tree nodes. In detail, Constant directly returns
the constant value, while Variable refers to the value stored in the
property schema which should be retrieved from cache or storage.
Predicate and Arithmetic will return the results computed from
their left and right child. Note that Predicate will always be the
tree root that returns Boolean value for the filtering. Below gives
an expression tree for the property constraint v.age + 10 > 30:

Predicate: >

Arithmetic: +

Variable: age

Constant: 10

Constant: 30

2.2 Logical Execution Plan
It is natural to express the graph patternmatching with joins. For ex-
ample, a triangle query can be written as R(v1,v2,v3) = E(v1,v2) Z

4https://github.com/tikv/tikv
5https://github.com/cleishm/libcypher-parser

https://neo4j.com/developer/cypher-query-language/
http://www.opencypher.org/
https://github.com/opencypher/morpheus##morpheus-cypher-for-apache-spark
https://github.com/tikv/tikv
https://github.com/cleishm/libcypher-parser

E(v2,v3) Z E(v1,v3), where E(∗) stands for the edges of the data
graph. In the distributed context, researchers are seeking optimal
join plans to minimize communication cost during the execution.
Among the efforts two algorithms (strategies) stand out, namely
“Binary-join-based subgraph-growing algorithm" (BinaryJoin) and
“Worst-case optimal vertex-growing algorithm" (WOptJoin).

BinaryJoin decomposes the pattern graph into a set of join units
that are either star (a tree of depth 1) or clique (a complete graph).
These join units can be independently computed in each partition
of the graph, which are further joined together following a pre-
computed order to produce the final results. WOptJoin is based on
the worst-case optimal join algorithm [14] with a vertex-growing
fashion. In detail, WOptJoin determines the matching order of the
query vertices via a greedy heuristic that starts with vertex of the
largest degree, and consequently selects next vertex which has
most connections (id as tie breaker) with already-selected vertices.
Following the matching order as {v1,v2, . . . ,vn }, the algorithm
first computes the results of {v1,v2} (edges) that can end up in the
final results, then grows to {v1,v2,v3}, and so on until the results
are constructed.

In recent experiments [10], we have found out that there are
some pattern graphs that favour BinaryJoin algorithm, while some
others favour WOptJoin. As a result, we propose to compute both
join plans, then use the cost estimation proposed in [9] to evaluate
both plans, and finally select the one with less cost (break tie with
WOptJoin). In [1], the authors showed a hybrid solution that can
leverage the advantages of both BinaryJoin andWOptJoin. While
it requires further study in the distributed context, we leave it as
an interesting future work.

2.3 Graph Storage and Cache
For now we partition the graph regarding the vertices, where each
vertex is placed together with all its neighbours (both incoming and
outgoing for directed graphs) and the vertex properties. An edge is
identified by the source vertex and target vertex, with its proper-
ties being placed in the source vertex’s machine. With the simple
partition strategy, graph structure of each partition is stored using
compressed sparse row6 in each machine’s in-memory cache. The
cache also contains frequently-used properties of vertices and edges
up to a memory threshold. The property cache will be replaced
using an LRU (least recently used) strategy. As “label” property
presents in most queries, we directly maintain the vertex and edge
“label” in-memory with the graph structure, where each label is
automatically converted to an integer. This results in faster filtering
on “label”. As one important future work, we will investigate graph
partition by injecting a “Placement driver” between the Cache layer
and Persistent storage layer. A better cache replacement strategy
will also be studied and applied in the future.

3 PERFORMANCE STUDIES
We use the LDBC social network benchmarking library (SNB) 7 to
study the performance of PatMat. SNB provides a data generator
that generates a synthetic social network of required statistics, as
well as a document that describes benchmarking tasks consisting of
pattern matching queries. We use four of them as shown in Figure 3,
where the filtering constraints are listed beneath the query, with

6https://en.wikipedia.org/wiki/Sparse_matrix
7http://ldbcouncil.org/benchmarks

p1 :knows

:has_c

reator

p1.firstName = *

p1

:has_c

reator

:reply_of

:has_c

reator

p1.lastName = *

p1
:knows

:like

p1.firstName = *

:has_c

reator

:knows

p1

:knows

:has_c

reator
:has_c

reator

:tag :tag

p1.firstName = * AND

p2.firstName = *

Q1 Q2 Q3 Q4

Person Post Comment Tag

p2

Figure 3: The LDBC queries.

Q1/s Q2/s Q3/s Q4/s
Neo4j 87 594 236 182
PatMat 12 24 17 256

Table 1: PatMat vs. Neo4j: single server

Q1/s Q2/s Q3/s Q4/s
Gradoop OOM OT OOM OOM
Morpheus OT OT OT OT
PatMat 2.6 9.4 5.3 77.3

Table 2: PatMat vs. Gradoop and Morpheus: 10 machines
“*” indicating some names randomly picked from the database. We
adapt the queries in two ways: (1) using one-hop edge for multi-
hop edges; (2) removing aggregators. We will support these query
variants in the future version. We generate the benchmarking data
graph using the "Facebook" mode with a duration of 3 years, and a
scale factor of 60. The graph has 187.11million vertices and 1246.66
million edges respectively, occupying over 65GB disk space in text
file, and 170GB in Neo4j’s database (including indices).

We deploy benchmarking on two systems: (1) a local cluster of 10
machines connected via one 10GBps switch, in which each machine
has 64GB memory, 1 TB disk and 1 Intel Xeon CPU E3-1220 V6
3.00GHz with 4 physical cores; (2) a server of 2 Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz (each has 20 cores 40 threads), 500GB
memory and 2 TB disk. We allow 2 hours as the maximum running
time for each test, with OT and OOM indicating a test case running
out of the time limit and out of memory respectively.
SingleMachine.We compare PatMatwith Neo4j [8] on the server.
As Neo4j can only run each query using one CPU core, we configure
one worker for PatMat for a fair comparison. Table 1 shows the
results. We make sure that both PatMat and Neo4j are caching the
whole graph in memory. PatMat runs much faster than Neo4j in
all queries except Q4, for which PatMat is only around 1.4x times
slower. PatMat’s runtime efficiency is partly due to itsWOptJoin
(“vertex-growing”) and BinaryJoin strategies [10], compared to
Neo4j’s “edge-growing” strategy which grows one edge each round
until finding the results. The “edge-growing” strategy is proven
to be sub-optimal [3] and may produce a large number of inter-
mediate results. In comparison,WOptJoin (“vertex-growing”) and
BinaryJoin strategies [10] are guaranteed with worst-case optimal-
ity and they render much fewer intermediate results. Moreover,
PatMat’s runtime efficiency is relevant to two other factors: (1)
PatMat is a prototype system which supports fewer features, hence
is inherently more efficient. (2) While Neo4j is built on Java, PatMat
is implemented by Rust which is a faster language. Note that we
can easily configure PatMat to run in parallel on the server to scale
out.

https://en.wikipedia.org/wiki/Sparse_matrix
http://ldbcouncil.org/benchmarks

Distributed Context. In this experiment, we compare PatMat
with Gradoop and Morpheus in a local cluster of 10 machines, each
running 3 workers. We record the running time (of the slowest
worker) of each system in Table 2. Gradoop and Morpheus failed
all test cases due to either OOM or OT. This is most likely due to
the “edge-growing” strategy adopted by both systems, which is
sub-optimal [3] and may generate too many intermediate results
during computation. Comparatively, PatMat uses WOptJoin and
BinaryJoin strategies [10] which produce much fewer intermediate
results. Furthermore, the base systems of Gradoop and Morpheus,
namely Flink and Spark, have been shown to incur large system
cost despite their scalability [12].

4 DEMONSTRATION SCENARIOS
The demonstration mainly presents: (1) the processing pipeline of
PatMat; (2) comparison of PatMatwith existing Cypher-compatible
systems using a large dataset; (3) real-life applications. Throughout
the demonstration, the attendee will be able to get familiar with the
system architecture of PatMat as well as its performance advantage
and practicality.

4.1 Processing Pipeline
In this scenario, we guide the attendee to experience the whole
processing pipeline of PatMat8, including:

• Cluster configuration: The attendee can configure the cluster
to deploy PatMat;

• Graph construction: We allow the attendee to specify the
sources of the graph data (local csv and remote data on S3)
and load them to construct the PatMat graph DB. PatMat
will persist the graph data in TiKV and initialize the cache
at backend;

• Writing query using Cypher: The attendee will be provided
with ER-diagram of the DB, and guided to write graph pat-
tern query using Cypher. The query will be parsed and visu-
alized so that attendee can review and modify;

• Generating execution plan: Once the query is specified, we
will guide the attendee to configure options to generate an
optimal execution plan to run in the configured cluster;

• Result and performance metrics demonstration: After exe-
cution, the attendee will see the results according to what
he/she specified in the Cypher query. In addition, the perfor-
mance metrics such as running time, communication cost,
size of intermediate results and memory usage etc. will be
displayed.

4.2 Comparing with Existing Systems
In this scenario, we will pre-load a large dataset in AWS cluster
and allow attendee to specify one of the benchmarked queries.
The query will be executed in the AWS cluster using Gradoop,
Morpheus and PatMat respectively. The performance metrics will
be delivered back to the scene and demonstrated to the attendee.
We use this scenario to show PatMat’s advantage over existing
Cypher-compatible solutions in the distributed context.

8Demo video available at https://www.youtube.com/watch?v=df5bvs0AHHU

4.3 Real-life Application
We will show how PatMat can be used to recommend authors from
DBLP network to attendees as potential collaborators. We construct
the DBLP co-authorship network covering authors who have pub-
lished papers in the past 5 years in top-tier DB/DM conferences
including SIGMOD, VLDB, ICDE, KDD, ICDM and CIKM. The edges
in network will record frequencies of co-authorship. The query is
a pattern graph of 4-clique missing one edge from the attendee
to the potential collaborator. The query further requires that each
existing co-authorship (edge) has a frequency of at least 2.

5 ACKNOWLEDGEMENTS
Xuemin Lin is supported by 2019DH0ZX01, 2018-YFB1003504, NSFC
61232006, ARC DP180103096 and DP170101628.

REFERENCES
[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.

EmptyHeaded: A Relational Engine for Graph Processing (SIGMOD ’16). 431–446.
[2] Foto N. Afrati, Dimitris Fotakis, and Jeffrey D. Ullman. 2013. Enumerating

subgraph instances using map-reduce. In Proc. of ICDE’13.
[3] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. 2018.

Distributed Evaluation of Subgraph Queries Using Worst-case Optimal Low-
memory Dataflows. Proc. VLDB Endow. 11, 6 (2018), 691–704.

[4] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient
Subgraph Matching by Postponing Cartesian Products (SIGMOD ’16). 1199–1214.

[5] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38 (2015), 28–38.

[6] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: Towards
Ultrafast and Robust Subgraph Isomorphism Search in Large Graph Databases.
In Proc. of SIGMOD’13.

[7] Martin Junghanns, Max Kiessling, Niklas Teichmann, Kevin Gómez, André Pe-
termann, and Erhard Rahm. 2018. Declarative and Distributed Graph Analytics
with GRADOOP. Proc. VLDB Endow. 11, 12 (Aug. 2018), 2006–2009.

[8] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An Active Graph Database (SIGMOD ’17).
1695–1698.

[9] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu Yang.
2016. Scalable Distributed Subgraph Enumeration. Proc. VLDB Endow. 10, 3 (2016),
217–228.

[10] Longbin Lai, Zhu Qing, Zhengyi Yang, Xin Jin, Zhengmin Lai, Ran Wang,
Kongzhang Hao, Xuemin Lin, Lu Qin, Wenjie Zhang, Ying Zhang, Zhengping
Qian, and Jingren Zhou. 2019. Distributed Subgraph Matching on Timely
Dataflow. Proc. VLDB Endow. 12, 10 (2019), 1099–1112.

[11] Sune Lehmann, Martin Schwartz, and Lars Kai Hansen. 2008. Biclique communi-
ties. Phys. Rev. E 78 (2008), 016108. Issue 1.

[12] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! But at
What Cost? (HOTOS’15).

[13] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System (SOSP ’13). 439–455.

[14] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case
Optimal Join Algorithms. J. ACM 65, 3 (2018).

[15] Miao Qiao, Hao Zhang, and Hong Cheng. 2017. Subgraph Matching: On Com-
pression and Computation. Proc. VLDB Endow. 11, 2 (2017), 176–188.

[16] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-time Constrained Cycle Detection in Large Dynamic
Graphs. Proc. VLDB Endow. 11, 12 (2018), 1876–1888.

[17] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph Databases: New Oppor-
tunities for Connected Data (2nd ed.). O’Reilly Media, Inc.

[18] R. Shamir and D. Tsur. 1997. Faster subtree isomorphism. In Proceedings of the
Fifth Israeli Symposium on Theory of Computing and Systems. 126–131.

[19] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu. 2014. Parallel
Subgraph Listing in a Large-scale Graph. In SIGMOD’14. ACM, 625–636.

[20] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). 2–2.

https://www.youtube.com/watch?v=df5bvs0AHHU

	Abstract
	1 Introduction
	2 System Overview
	2.1 Cypher Parser
	2.2 Logical Execution Plan
	2.3 Graph Storage and Cache

	3 Performance Studies
	4 Demonstration Scenarios
	4.1 Processing Pipeline
	4.2 Comparing with Existing Systems
	4.3 Real-life Application

	5 Acknowledgements
	References

