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Abstract Subgraph enumeration, which aims to find
all the subgraphs of a large data graph that are isomor-
phic to a given pattern graph, is a fundamental graph
problem with a wide range of applications. However,
existing sequential algorithms for subgraph enumera-
tion fall short in handling large graphs due to the in-
volvement of computationally intensive subgraph iso-
morphism operations. Thus, some recent researches fo-
cus on solving the problem using MapReduce. Never-
theless, exiting MapReduce approaches are not scalable
to handle very large graphs since they either produce
a huge number of partial results or consume a large
amount of memory. Motivated by this, in this paper,
we propose a new algorithm TwinTwigJoin based on a
left-deep-join framework in MapReduce, in which the
basic join unit is a TwinTwig (an edge or two incident
edges of a node). We show that in the Erdös-Rényi
random graph model, TwinTwigJoin is instance opti-
mal in the left-deep-join framework under reasonable
assumptions, and we devise an algorithm to compute
the optimal join plan. We further discuss how our ap-
proach can be adapted to the power-law graphs. Three
optimization strategies are explored to improve our al-
gorithm. Ultimately, we utilize the compressed graph
to further boost the algorithm. The compressed graph
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is computed by aggregating nodes that have the same
neighbors into a compressed node. We conduct exten-
sive performance studies in several real graphs, one of
which contains billions of edges. Our approach signifi-
cantly outperforms existing solutions in all tests.
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1 Introduction

In this paper, we study subgraph enumeration, a funda-
mental problem in graph analysis. Given an undirected,
unlabelled data graph G and a pattern graph P , sub-
graph enumeration aims to find all subgraph instances
of G that are isomorphic to P . Subgraph enumeration
is widely used in many applications. For example, sub-
graph enumeration is used for network motif comput-
ing [26,4] to facilitate the design of large network from
biochemistry, neurobiology, ecology, and bioinformat-
ics. It is utilized to compute the graphlet kernels for
large graph comparison [27,29] and property general-
ization for biological networks [25]. It is considered as
a key operation for the synthesis of target structures
in chemistry [32]. It is also adopted to illustrate the
evolution of social networks [18] and to discover the in-
formation trend in recommendation networks [22]. In
addition, as a special case of subgraph enumeration,
triangle enumeration is a preliminary operation in clus-
ter coefficient calculation [40] and community detection
[39].

Motivation. Enumerating subgraphs in a big data
graph, despite its varied applications, is extremely chal-
lenging for two reasons. First, subgraph enumeration
is computationally intensive since determining whether
a data graph contains a subgraph that is isomorphic
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to a given pattern graph, known as subgraph isomor-
phism, is NP-complete. Second, the lack of label infor-
mation makes it hard to filter infeasible partial answers
in early stages, rendering a large number of partial re-
sults, whose size can be much larger than the size of
the data graph and the final results. Due to these chal-
lenges, existing sequential algorithms for subgraph enu-
meration [7,14] are not scalable to handle big graphs.
Some other studies try to find approximate solutions
[4,13,42] to reduce the computational cost, however,
they only estimate the count of the matched subgraphs
rather than locate all the subgraph instances.

MapReduce [10], as one of the most popular parallel
computing paradigms for big data processing, has been
widely used in both industry and academia. MapRe-
duce features high scalability, reliability, fault-tolerance
and the easy-to-use programming interfaces. In the lit-
erature, two existing approaches focus on subgraph enu-
meration using MapReduce, namely, edge-based join
[28] and multiway join [1].

In edge-based join [28], the pattern graph is decom-
posed into an ordered list of edges. The algorithm pro-
ceeds in multiple MapReduce rounds, each of which
grows one edge using the join operation. Edge-based
join is inefficient as joining one edge in each round can-
not fully make use of the structural information, which
may render numerous partial results. In multiway join
[1], only one MapReduce round is needed. Each edge
is duplicated in multiple machines such that each ma-
chine can enumerate the subgraphs independently and
no match is missed. However, multiway join usually en-
counters serious scalability problems by keeping almost
the whole graph in the memory of each machine when
the pattern graph is complex.

We propose a new approach for subgraph enumer-
ation using MapReduce in this paper considering the
drawbacks of edge-based join and multiway join. We in-
troduce a two-way-join framework that generalizes the
edge-based join to allow joining a star (a tree of depth
one) instead of a single edge in each round. However,
joining a star is sometimes inefficient as well. Thus, we
propose the TwinTwigJoin which uses a TwinTwig (an
edge or two incident edges of a node) as the basic join
element in each round. TwinTwigJoin, as a tradeoff be-
tween edge-based join and star-based join, has several
advantages. First, based on a well-defined cost model as
well as a variant of Erdös Rényi random-graph model,
we show that TwinTwigJoin can ensure instance opti-
mality in the two-way-join framework. Second, the sim-
ple structure of a TwinTwig makes it easy to devise an
optimal join plan based on the A* algorithm. Third, a
lot of optimization strategies can be designed on top
of TwinTwigJoin, including order-aware cost reduction,
workload skew reduction, and early filtering.

Note that most real-life data graphs are far from
random. In this paper, we first deliver the result of
instance optimality by assuming that the data graph
is a random graph. This not only provides the theo-
retic evidence of why the algorithm presented in the
paper is sound but also gives the foundation of our
analysis of power-law graphs. Later, we extend the re-
sults to power-law graphs with the aim to cover real-life
large graphs, such as social networks, web graphs, and
protein-protein interaction networks.

We further improve the performance of the algo-
rithm by exploiting the node-equivalence relationships.
A set of nodes that have the same neighborhoods are
considered as equivalent nodes and aggregated into
one compressed node, which transforms the original
graph into a compressed graph. Ren et al. applied
the technique in [31] to boost the subgraph matching.
However, their centralized algorithm cannot scale to
web-scale real graphs. In this paper, we propose non-
trivial MapReduce algorithms to solve subgraph enu-
meration regarding the compressed graph via two chal-
lenging tasks:

– (1) Construct the compressed graph. In the dis-
tributed context, we can only access to the neigh-
bors while processing each node. Therefore, we need
to design the algorithm carefully to ensure that the
algorithm is correct and at the same time, it is com-
putationally efficient.

– (2) Query the compressed graph. We cannot directly
follow the backtracking algorithm proposed by [31].
On the other side, we cannot trivially extend the
proposed join algorithm due to the involvement of
compressed nodes.

To solve task (1), we first identify three kinds of com-
pressed nodes. Then we use those nodes to bind the
compressed edges and construct the compressed graph.
The algorithm has linear communication cost, and
hence can scale to web-scale real graphs. Considering
the properties of the compressed nodes, we carefully
devise a new algorithm based on the join framework to
tackle task (2). We formally prove the correctness of all
the proposed algorithms.

Contributions. We make the following contributions
in this paper.
(1) A left-deep-join framework to allow joining multiple

edges in each round. We introduce a framework based
on left-deep join for subgraph enumeration in MapRe-
duce (Section 3), which generalizes the edge-based join
to allow multiple edges (in forms of stars) to join in
each round.
(2) A novel algorithm to ensure instance optimality.

We propose a novel TwinTwigJoin algorithm in Sec-
tion 5 following the left-deep-join framework, which
uses TwinTwig as the basic join element in each MapRe-
duce round. We analyze the cost of TwinTwigJoin based
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on the Erdös-Rényi random-graph model, upon which
we prove that TwinTwigJoin is instance optimal in the
left-deep-join framework. We further develop an A*-
based algorithm to compute the optimal join plan for
TwinTwigJoin by defining a cost upper bound for any
partial join. The algorithm can be adapted to any other
graph model given that the cost upper bound for a
partial join can be computed in the graph model. It
is worth noting that we propose a comprehensive cost
model for subgraph enumeration for the first time. Ac-
cording to the proposed cost model, our subgraph enu-
meration algorithm is optimal.

(3) Extension to power-law graphs. We show how our
algorithms and theoretical results can be adapted to
the power-law graph model in Section 6.

(4) Three optimization strategies to further improve
the algorithm. We explore three optimization strate-
gies in Section 7, namely, order-aware cost reduction,
workload skew reduction, and early filtering, to further
improve the TwinTwigJoin algorithm. Order-aware cost
reduction considers three types of TwinTwigs based on
a predefined order of nodes in the data graph and pat-
tern graph, which can be utilized to reduce the total
computational cost. Workload skew reduction is used to
reduce the workload skew caused by a few high-degree
nodes in the data graph. This is accomplished by parti-
tioning the neighbors of high-degree nodes into multiple
machines. Early filtering makes use of the free memory
to further filter invalid partial results in early stages of
the algorithm.

(5) Compressed graph based on node equivalence. We
develop non-trivial MapReduce algorithms to construct
the compressed graph by aggregating the equivalent
nodes into a compressed node. We show that the com-
munication cost of the algorithm is linear to the graph
size, thus it can scale to large graphs. We further devise
an algorithm based on the join framework to process
subgraph enumeration on the compressed graph. We
show the correctness of all proposed algorithms (Sec-
tion 8).

(6) Extensive performance studies using web-scale real
graphs. We conduct extensive performance studies in
six real graphs with different graph properties, and the
largest one of them contains billions of edges. The ex-
perimental results demonstrate that our TwinTwigJoin
algorithm achieves high scalability and outperforms all
other state-of-the-art algorithms in all datasets (Sec-
tion 9).

Outline. Section 2 presents the preliminaries and gives
the formal problem definition. Section 3 shows the join
framework for solving subgraph enumeration. Section 4
introduces three state-of-the-art algorithms for sub-
graph enumeration in MapReduce. Section 5 studies a
new TwinTwigJoin algorithm, proves its instance op-

timality using the Erdös-Rényi random-graph model,
and provides an optimal join plan based on the A* al-
gorithm. Section 6 shows how our algorithm can be ex-
tended to deal with the power-law graph model. Sec-
tion 7 explores three optimization strategies to further
optimize the TwinTwigJoin algorithm. Section 8 studies
how to construct the compressed graph and how our
algorithm can be adapted to process queries over the
hyper graph. Section 9 evaluates all introduced algo-
rithms using extensive experiments. Section 10 reviews
the related work, and Section 11 concludes the paper.
To enhance readability, we have included all proofs of
lemmas and theorems in the appendix.

2 Problem Definition

Subgraph Enumeration. We model a data graph as
an undirected and unlabeled graph G = (V (G), E(G)),
where V (G) represents the set of nodes and E(G) repre-
sents the set of edges each of which connects two nodes
in V (G). We let |V (G)| = N and |E(G)| = M , and
assume M > N . We use {u1, u2, . . . , uN} to denote the
set of nodes in G. For each ui ∈ V (G), we use N (ui)
to denote the set of neighbor nodes of ui, and we use
d(ui) to denote the degree of ui, i.e., d(ui) = |N (ui)|,
and dmax = maxui∈V (G) d(ui). We define d = 2M/N to
be the average degree of the data graph. A subgraph g
of G is a graph such that V (g) ⊆ V (G), E(g) ⊆ E(G).

A pattern graph is an undirected, unlabeled and con-
nected graph, denoted P = (V (P ), E(P )), where V (P )
represents the set of nodes and E(P ) represents the set
of edges, and we let |V (P )| = n and |E(P )| = m. We
use {v1, v2, . . . , vn} to denote the set of nodes in P . For
each vi ∈ V (P ), N (vi) and d(vi) are defined analogous
to those defined in the data graph G. Note that it is
trivial when P is a node or an edge, thus we assume
|V (P )| ≥ 3 in this paper.

Definition 1 (Match) Given a pattern graph P and
a data graph G, a match f of P in G is a mapping from
V (P ) to V (G) such that the following two conditions
hold:

– (Conflict Freedom) For any pair of nodes vi ∈ V (P )
and vj ∈ V (P ) (i 6= j), f(vi) 6= f(vj).

– (Structure Preservation) For any edge (vi, vj) ∈
E(P ), (f(vi), f(vj)) ∈ E(G).

We use f = (uk1 , uk2 , . . . , ukn) to denote the match f ,
i.e., f(vi) = uki for any 1 ≤ i ≤ n.

Definition 2 (Graph Isomorphism) Given two
graphs gi and gj , gi and gj are isomorphic, if and only
if there exists a match of gi in gj , and |V (gi)| = |V (gj)|
and |E(gi)| = |E(gj)|.
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Fig. 1 Pattern Graph P (Left) and Data Graph G (Right).

Definition 3 (Subgraph Enumeration) Given a
pattern graph P and a data graph G, subgraph enu-
meration is to enumerate all subgraphs g of G such
that g is isomorphic to P .

Definition 4 (Automorphism) Given a graph g, an
automorphism of g is a match from g to itself. We use
A(g) to denote the set of automorphisms for a graph g.

Given a pattern graph P and a data graph G, if the
total number of enumerated subgraphs is s then the
total number of matches of P in G is |A(P )| × s. Since
then, if P has only one automorphism, i.e., |A(P )| = 1,
the problem of subgraph enumeration is equivalent to
enumerating all matches of P in G. In the following, for
ease of analysis, we first assume that the pattern graph
P has only one automorphism, i.e., |A(P )| = 1, and
thus we focus on enumerating all matches of P in G.
In Section 5.4, we will discuss the general cases when
|A(P )| ≥ 1.

Example 1 Fig. 1 shows a pattern graph P which is a
square, and a data graph G with 4 nodes and 6 edges.
We can find the following three subgraphs of G that is
isomorphic to P : (u1, u2, u3, u4) (the peripheral square),
(u1, u3, u2, u4) (the shadowed part), and (u1, u2, u4, u3)
(the white part).

Graph Storage. We assume the data graph G is stored
in a distributed file system using adjacency lists, that
is, for each node u ∈ V (G), we store the adjacency list
of u as a key-value pair (u;N (u)) in the distributed file
system.

Assumptions. In this paper, our theoretical results are
derived based on the following assumptions:

– A1: The data graph follows the Erdös Rényi
random-graph model, which will be introduced in
Section 5.2.

– A2: The algorithm follows a left-deep-join frame-
work, where the right join argument is a star. It
will be further discussed in Section 3.

– A3: The data graph is sparse; more specifically, the
average degree d = 2M/N <

√
N .

Problem Statement. Given a data graph G stored in
a distributed file system, and a pattern graph P , the
purpose of this work is to enumerate all subgraphs of G
that are isomorphic to P (based on Definiton 3) using
MapReduce.

3 Algorithm Framework

Algorithm 1: SubgraphEnum( data graph G, pat-
tern graph P )

Input : G : The data graph,
P : The pattern graph.

Output : R(Pt): All Matches of Pt in G.
1 function SubgraphEnum (G, P )
2 compute a graph decomposition {p0, p1, . . . , pt} of P ;
3 for i = 1 to t do
4 R(Pi)← R(Pi−1) 1 R(pi); (using mapi and reducei)

5 return R(Pt);

6 function mapi( key: ∅; value: Either a match
f ∈ R(Pi−1) when i > 1 or (u,N (u)) for a node
u ∈ V (G) )

7 {vk1
, vk2

, . . . , vkl} ← V (Pi−1) ∩ V (pi);
8 if i = 1 then
9 Gu ← a graph formed by edges (u, v) for v ∈ N (u);

10 Ru(P0)← all matches of P0 in Gu;
11 forall the match f ∈ Ru(P0) do
12 output ((f(vk1

), f(vk2
), . . . , f(vkl)); f);

13 if Value is a match f ∈ R(Pi−1) then
14 output ((f(vk1

), f(vk2
), . . . , f(vkl)); f);

15 else
16 Gu ← a graph formed by edges (u, v) for v ∈ N (u);
17 Ru(pi)← all matches of pi in Gu;
18 forall the match h ∈ Ru(pi) do
19 output ((h(vk1

), h(vk2
), . . . , h(vkl));h);

20 function reducei( key:r = (uk1
, uk2

, . . . , ukl); value:
F = {f1, f2, . . . }, H = {h1, h2, . . . } )

21 forall the (f, h) ∈ (F ×H) s.t. (f − r) ∩ (h− r) = ∅ do
22 output (∅; f ∪ h);

In this section, we introduce a left-deep-join-based
framework for subgraph enumeration in MapReduce.
Generally speaking, given a data graph G and a patten
graph P , subgraph enumeration is processed using a list
of left-deep join operations, each of which is evaluated
using one round of MapReduce. Before introducing the
framework for subgraph enumeration, we first give the
definitions of pattern decomposition, partial pattern,
and partial result.

Definition 5 (Pattern Decomposition) Given a
pattern graph P , a pattern decomposition of P , D =
{p0, p1, . . . , pt} is a disjoint partition of the edges of P ,
such that pi (0 ≤ i ≤ t) is a star (a tree of depth 1),
and V (pi) ∩

⋃
0≤j<i V (pj) 6= ∅ (i 6= 0).

Definition 6 (Partial Pattern Pi) Given a pattern
decomposition {p0, p1, . . . , pt} of P , a partial pattern Pi
(0 ≤ i ≤ t) is a subgraph of P , such that V (Pi) =⋃

0≤j≤i V (pj) and E(Pi) =
⋃

0≤j≤iE(pj). We have
P0 = p0 and Pt = P . We use Di = {p0, p1, . . . , pi} to
denote a partial pattern decomposition of partial pat-
tern Pi for any 0 ≤ i ≤ t.
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According to the above definitions, we require that
each decomposed unit pi shares at least a common node
with the partial pattern Pi−1 for any 1 ≤ i ≤ t.

Definition 7 (Partial Result R(S)) Given a sub-
graph S of the pattern graph P , and a data graph G,
the partial result w.r.t. S, denoted as R(S), is the set of
matches of S in G. Obviously, R(P ) is the final result
of the subgraph enumeration problem.

The Framework. The framework of subgraph enumer-
ation using MapReduce is shown in Algorithm 1. Given
a graph G and a pattern P , we first compute a graph
decomposition {p0, p1, . . . , pt} of P which indicates a
join plan (line 2). Then the algorithm is processed in
t MapReduce rounds. Each round (lines 3-4) computes
the partial result R(Pi) by joining R(Pi−1) with R(pi),
and obviously, E(Pi) = E(Pi−1) ∪ E(pi) for 1 ≤ i ≤ t.
Each join operation is processed using MapReduce with
mapi and reducei.

(Function mapi): The function mapi is shown in
lines 6-19 of Algorithm 1. The input of mapi is either
a match f ∈ R(Pi−1) if i > 1, or (u;N (u)) for a node
u ∈ V (G) (line 6). Both R(Pi−1) and G are stored in
the distributed file system. We first calculate the join
key {vk1 , vk2 , . . . , vkl} using V (Pi−1)∩V (pi) (line 7). If
i = 1, we need to compute the matches of P0, Ru(P0),
based on node u and its neighbors N (u), and output
each such match (as a match in R(P0)) along with the
corresponding join key (lines 8-12). Then, if the input
of mapi is a match f ∈ R(Pi−1), we simply output f
along with the corresponding join key (line 14). Other-
wise, we compute the matches of pi associated with u,
Ru(pi), as we do when we compute P0 (lines 15-19).

(Function reducei): The set of key-value pairs with
the same key r = (uk1 , uk2 , . . . , ukl) are processed
using the same function reducei. There are two types
of values, F = {f1, f2, . . . } and H = {h1, h2, . . . },
generated by R(Pi−1) and R(pi) respectively. For each
(f, h) ∈ (F × H) that shares the same join key, we
output f ∪h with the condition that (f − r)∩ (h− r) =
∅ to avoid node conflict (refer to the conflict freedom
condition in Definiton 1)(lines 20-22).

Discussion. In the mapi phase of Algorithm 1, we need
to compute R(P0) for i = 1 (lines 8-12) and R(pi) for
1 ≤ i ≤ t (lines 15-19) in G. Note that R(P0) = R(p0),
thus overall we need to compute R(pi) for 0 ≤ i ≤ t
in G. We now discuss assumption A2. Recall that G is
stored as a set of key-value pairs (u;N (u)) for u ∈ V (G)
in the distributed file system, and each key-value pair is
processed by mapi separately according to the MapRe-
duce framework. In this framework, each pi should be a
star. As taken (u;N (u)) as input, each mapi function
can generate the matched stars rooted at u separately
by enumerating the node combinations from N (u).

��
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Fig. 2 The pattern decomposition and the corresponding
partial patterns.

Example 2 In Fig. 2, we decompose the pattern graph
into {p0, p1, p2}. The corresponding partial patterns
P0, P1, and P2 are also presented. Based on the frame-
work in Algorithm 1, the subgraph enumeration algo-
rithm is processed in two MapReduce rounds. In the
first round, we compute R(P1) using R(P0) 1 R(p1)
with V (P0)∩V (p1) = {v2, v3, v4} as the join key. In the
second round, we compute R(P2) using R(P1) 1 R(p2)
with V (P1) ∩ V (p2) = {v3, v4} as the join key.

Left-Deep vs. Bushy. In Algorithm 1, we evaluate P
using left-deep join based on the pattern decomposition
D. In addition to left-deep join, we can also use bushy
join to process the tasks. Bushy join actually provides
more varieties for an optimal join plan than its special
case, left-deep join. However, we choose left-deep join
in this paper due to the following aspects. First, as indi-
cated in [34], left-deep join can still provide optimal so-
lutions in many cases, especially when the join graph is
highly connected. Second, left-deep join requires keep-
ing much fewer partial results than bushy join. The par-
tial results we need to keep are generated from only one
iteration (the iteration prior to current one) in left-deep
join but multiple iterations in bushy join. Finally and
more importantly, it is much less expensive to compute
an optimal join plan for left-deep join given its simpler
computation structure.

Induced match. We show that Algorithm 1 can be
adpated to induced match. The induced match, com-
pared to Definiton 1, requires another inducing con-
straint, that is, for two pattern nodes vi and vj , if
(vi, vj) 6∈ E(P ), then (f(vi), f(vj)) 6∈ E(G). Algo-
rithm 1 can be adapted to computing the induced
match by filtering the (partial) matches that do not
satisfy the inducing constraint in each step. Consider
the pattern graph P and its partial pattern Pi whose
results R(Pi) are computed in the ith step. If Pi does
not include nodes that are not in Pi−1, then there needs
no filtering. Otherwise, denote V +

i as the set of nodes
added by Pi. We define the suspected edges for Pi as
Esi = {(v, v′) | v ∈ V +

i ∧ v′ ∈ V (Pi) ∧ (v, v′) 6∈ E(P )},
and the suspected node cover V si as the minimum set of
nodes in Pi that covers Esi . Let V si = {vs1 , vs2 , . . . , vsi}.
Then we use si rounds of MapReduce to filter non-
induced matches. Suppose R̃(j−1)(Pi) is the set of in-



6 Longbin Lai et al.

duced matches after the (j − 1)th-round filtering (0 <
j <= si and note that R̃(0)(Pi) = R(Pi). In the jth

round, we apply the following filtering procedure for
each f ∈ R̃(j−1)(Pi). Let ũ = f(vsj ). We produce
the key-value pair (ũ; f) in the map phrase and it will
reach the machine that the data node ũ is stored (as
(ũ;N (ũ))). In the reduce phrase, we will filter f if
(vsj , v

′) 6∈ E(P ) ∧ (ũ, f(v′)) ∈ E(G). In this way, we
are able to filter non-induced matches as early as pos-
sible and finally obtain the induced matches.

v1

v2 v3

v4 v1 v4

v3

v1 v4

v3v2

P1P0P
Fig. 3 A pattern graph P and its two consecutive partial
patterns P0 and P1.

Example 3 Fig. 3 presents a pattern graph P , and its
two consecutive partial patterns P0 and P1. Obviously,
the node set added by P1, V +

1 = {v2}, and the sus-
pected edge set Es1 = {(v2, v4)} as v2 ∈ V +

1 and
(v2, v4) 6∈ E(P ). As a result, we have V s1 = {v2} to cover
Es1 . When we obtain a match of P1, f = (u1, u2, u3, u4),
we will process the filtering by mapping f to where u2
is stored (simple setting u2 as the key in the map func-
tion). If u4 ∈ N (u2), f shall be filtered due to the
violation of the inducing constraint, otherwise it shall
be preserved.

4 Existing Solutions

In this section, we introduce three state-of-the-art al-
gorithms for subgraph enumeration in MapReduce:
EdgeJoin, StarJoin, and MultiwayJoin. Both EdgeJoin
and StarJoin follow the left-deep-join framework (Al-
gorithm 1) with different pattern decomposition strate-
gies. MultiwayJoin uses a new framework that enumer-
ates all subgraphs using only one MapReduce round by
duplicating edges in the data graph G. In the following,
we introduce EdgeJoin and StarJoin in Section 4.1 and
introduce MultiwayJoin in Section 4.2.

4.1 Left-Deep Join

Algorithm EdgeJoin. The EdgeJoin Algorithm is pro-
posed by Plantenga [28]. In EdgeJoin, each pattern
graph P is decomposed into {p0, p1, · · · , pt} where
each pi is an edge in E(P ). Thus, we have t = m − 1.
The EdgeJoin Algorithm has two drawbacks. Firstly, it
may generate a large number of intermediate matches.
Secondly, it needs m − 1 MapReduce rounds, which is
large. We explain the two drawbacks using the following
example.

Example 4 For the square given in Example 1, the
optimal pattern decomposition based on EdgeJoin is
p0 = {(v1, v2)}, p1 = {(v2, v3)}, p2 = {(v3, v4)}, p3 =
{(v4, v1)}. However, using this pattern decomposition
strategy, the algorithm needs 3 MapReduce rounds, and
the partial pattern P3 is a path of length 3, which may
result in a large number of intermediate matches in
R(P3) comparing to |R(P )|, i.e., |R(P3)| >> |R(P )|.
A better strategy is to decompose P into two parts:
p0 = {(v1, v2), (v2, v3)} and p1 = {(v3, v4), (v4, v1)},
which can be processed in only 1 MapReduce round,
and the size of the intermediate matches is not large
comparing to the size of the final result R(P ).

Algorithm StarJoin. The StarJoin algorithm decom-
poses the pattern graph into a list of stars. The star
decomposition strategy is proposed by Sun et al. [35].
Given a pattern graph P , and a node v ∈ V (P ), de-
note star(v) the star rooted at v with N (v) as its child
nodes. A star decomposition of P is defined as follows.

Definition 8 (Star Decomposition) Given a pat-
tern graph P , a star decomposition is a decomposi-
tion {p0, p1, · · · , pt} of P , such that there exists
{vk0 , vk2 , · · · , vkt} ⊆ V (P ) with p0 = star(vk0), and
pi = star(vki) \ Pi−1 for any 1 ≤ i ≤ t.

Comparing to EdgeJoin, StarJoin can largely reduce
the number of MapReduce rounds, however, StarJoin
still suffers from the scalability issue due to the large
number of intermediate matches generated when eval-
uating a star with a large degree. We explain the draw-
back using the following example.

Example 5 Fig. 2 shows an example of star decompo-
sition for a 4-clique pattern graph P , in which p0 is
a star with degree 3. In a real social network such as
Twitter, it is very common for a person to have more
than 10,000 followers. As a result, matching the root of
p0 to this single person alone will produce more than
1012 intermediate matches.

4.2 Multiway Join

The MultiwayJoin algorithm was proposed by Afrati et
al. [1]. MultiwayJoin enumerates subgraphs in the data
graph using only one MapReduce round, while in or-
der to do so, MultiwayJoin has to duplicate the edges
several times in the map phase, and the number of du-
plications grows enormously with the size of the pat-
tern graph. It is shown in [36] that MultiwayJoin can
be efficient when P is a triangle. However, it will suf-
fer from the scalability problem when P becomes more
complex. For ease of analysis, we suppose P is a clique
(complete graph) with n nodes. Let b = n

√
#r, where
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#r is the number of reducers. With the optimal set-
tings according to [1], the number of duplications for
each edge of G is Θ(m · bn−2) = Θ(n2 · bn−2), resulting
in Θ(M · n2 · bn−2) as a whole. Each reducer will hence

receive Θ(M ·n
2·bn−2

#r ) = Θ(M · n2

b2 ) by average. There
are two cases:

– (Case-1: b ≤ n) A reducer will receive Θ(M · n2

b2 )
≥ Θ(M) edges, which is equivalent to holding the
whole graph G.

– (Case-2: b > n) The total number of edge duplica-
tions is Θ(M · n2 · bn−2) > Θ(M · nn), which is too
large.

Obviously, both case-1 and case-2 are not scalable for
either large data graph G or complex pattern graph
P . Similar result can be derived when P is a general
graph.

5 A New Approach

As discussed above, EdgeJoin, StarJoin, and
MultiwayJoin will encounter scalability problems
when the data graph is large or the pattern graph is
complex. In this section, we propose a new algorithm
TwinTwigJoin that follows the left-deep-join framework
introduced in Section 3 with a new pattern decompo-
sition strategy, namely, TwinTwig decomposition. We
first introduce the TwinTwig decomposition strategy,
and analyze its optimality based on a variant of random
graph model. Then we propose an optimal TwinTwig
decomposition algorithm based on the A* framework.
Finally, we discuss symmetry breaking to allow the
pattern graph to have multiple automorphisms.

5.1 TwinTwig Decomposition

Definition 9 (TwinTwig Decomposition) A
TwinTwig decomposition is a decomposition D =
{p0, p1, . . . , pt} of pattern P such that each pi
(0 ≤ i ≤ t) is a TwinTwig, where a TwinTwig is either
a single edge or two incident edges of a node.

Our algorithm TwinTwigJoin is a left-deep-join algo-
rithm (following Algorithm 1) based on TwinTwig de-
composition. Obviously, TwinTwigJoin is a generaliza-
tion of EdgeJoin. Compared to EdgeJoin, TwinTwigJoin
makes use of more structural information of the pattern
graph to reduce the size of the intermediate results.
Compared to StarJoin, TwinTwigJoin avoids joining a
star with many edges by restricting the number of edges
to be at most 2, and it is more flexible to select which
one or two edge(s) of a star to join in a certain round
to minimize the overall cost. Next, we introduce a spe-
cial TwinTwig decomposition, namely, strong TwinTwig
decomposition.

Definition 10 (Strong TwinTwig Decomposition)
Let D = {p0, . . . , pt} be a TwinTwig decomposition
of P , a TwinTwig pi (1 ≤ i ≤ t) is a strong TwinTwig
if |V (pi) ∩ V (Pi−1)| ≥ 2, otherwise pi is a non-strong
TwinTwig.D is a strong TwinTwig decomposition if each
pi (1 ≤ i ≤ t) is a strong TwinTwig. The pattern P is
strong TwinTwig decomposable, denoted SDEC, if there
exists a strong TwinTwig decomposition of P .

In the following, we will introduce the cost model
and graph model, based on which we can prove the in-
stance optimality of TwinTwigJoin under the assump-
tions introduced in Section 2.

5.2 Cost Analysis

Cost Model. Following the framework in Algorithm 1,
for each MapReduce round i (1 ≤ i ≤ t), we consider
three types of data, denotedMi, Si, and Ri, which are
defined as follows:

– Mi is the input of the i-th map phase.Mi includes
all edges of graph G, and the partial result R(Pi−1)
generated in the previous round (if i > 1). Thus, we
have |M1| = |E(G)| and |Mi| = |R(Pi−1)|+ |E(G)|
for i > 1.

– Si is the data transferred in the i-th shuffle phase,
which is also the output of the i-th map phase as
well as the input of the i-th reduce phase. Si includes
two parts, R(Pi−1) and R(pi), thus we have |Si| =
|R(Pi−1)|+ |R(pi)|.

– Ri is the output of the i-th reduce phase. Ri in-
cludes the set of partial matches R(Pi), thus we have
|Ri| = |R(Pi)|.
There are many factors that can affect the effi-

ciency of Algorithm 1, including I/O cost, communi-
cation cost, computational cost, number of MapReduce
rounds, and workload balancing. We hence consider an
overall cost C as follows:

C = Σti=1(|Mi|+ |Si|+ |Ri|)

= 3Σti=1|R(Pi)|+ |R(P0)|+Σti=1|R(pi)|+ t|E(G)| − 2|R(Pt)|

= 3Σti=1|R(Pi)|+Σti=0|R(pi)|+ t|E(G)| − 2|R(Pt)|.

Obviously, C is a comprehensive measurement of
I/O cost, communication cost and computational cost,
and it also implies the impact of the number of MapRe-
duce rounds. Note that the last term 2|R(Pt)| =
2|R(P )| is independent of the decomposition strategy,
thus it can be removed from the cost function. There-
fore, given any pattern decomposition D = {p0, p1, . . . ,
pt}, the cost function, denoted as cost(D), can be de-
fined as

cost(D) = 3Σt
i=1|R(Pi)|+Σt

i=0|R(pi)|+ t|E(G)|. (1)
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Similarly, for any 0 ≤ i ≤ t, we can define the cost of a
partial pattern decomposition Di as

cost(Di) = 3Σi
j=1|R(Pj)|+Σi

j=0|R(pj)|+ i|E(G)|. (2)

For any 1 ≤ i ≤ t, given that Di = Di−1∪{pi}, we have

cost(Di) = cost(Di−1)+3|R(Pi)|+ |R(pi)|+ |E(G)|. (3)

Our aim is to find a decomposition D of the pattern
graph P so that cost(D) is minimized.

Graph Model. In order to analyze the cost of different
pattern-decomposition strategies, we will use two graph
models to depict the data graph G, namely the Erdös-
Rényi random graph model [11], denoted ER model,
and the power-law random graph model [3], denoted
PR model. In this paper, unless otherwise specified, we
will use random graph to represent a graph constructed
using the ER model, and power-law random graph for
a graph constructed via PR model. As indicated by as-
sumption A1, we first focus on the case that the data
graph is a random graph. Then we will extend our algo-
rithm to handle the power-law random graphs in Sec-
tion 6.

In the ER model, a graph is constructed by con-
necting nodes randomly. Each edge is included in the
graph with probability ω independently from every
other edges. Thus, for a data graph with N nodes
and M edges, the probability ω can be calculated as:
ω = 2M

N(N−1) , which can be approximated as 2M
N2 when

N is large.

Lemma 1 Given a pattern graph P and a random
graph G, if P is a connected graph, we have |R(P )| =
N !

(N−n)! × ωm.

Remark In practice, we often have n � N , hence we
can evaluate |R(P )| as:

|R(P )| = (2M)m/N2m−n (4)

Results on SDEC Pattern Graph P . In order to
show the instance optimality of the TwinTwig decompo-
sition, we first study a special case, in which the pattern
graph P is strong TwinTwig decomposable (SDEC). We
have the following lemma.

Lemma 2 Consider an SDEC pattern graph P , and
one of its strong TwinTwig decompositions, D = {p0,
p1, . . . , pt}. For any partial pattern Pi (1 ≤ i ≤ t), we
have

|R(Pi)| ≤ |R(Pi−1)| × (2M)2

N3
≤ |R(p0)| × (

(2M)2

N3
)i.
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Fig. 4 Constructing the TwinTwig decomposition D based on
a certain star decomposition D′.

Corollary 1 Consider an SDEC pattern graph P , and
one of its strong TwinTwig decomposition, D = {p0,
p1, . . . , pt}. Under the assumption A3, for any partial
pattern Pi (1 ≤ i ≤ t), we have

|R(Pi)| ≤ |R(Pi−1)| ≤ . . . ≤ |R(P0)| = |R(p0)|.

The General Case. We prove the instance optimality
of the general TwinTwig decomposition by showing that
given any pattern decomposition D′ = {p′0, p′1, . . . , p′t′},
where each p′i (0 ≤ i ≤ t′) is a star, we can construct
a corresponding TwinTwig decomposition D = {p0, p1,
. . . , pt} with cost(D) ≤ Θ(cost(D′)).

We first introduce how to construct D based on
D′. For any p′i ∈ D′, let Di = {pi1, pi2, . . . , piti} be a
TwinTwig decomposition of p′i which is constructed as
follows: Suppose ri is the root of p′i and {li1, li2, . . . , lit′i}
is the set of leaves of p′i sorted by putting those nodes
lij with lij ∈ V (P ′i−1) in the front (P ′i−1 is the i − 1-th
partial pattern w.r.t. D′), i.e., there exists a number ki,
s.t., if 1 ≤ j ≤ ki, l

i
j ∈ V (P ′i−1), and if ki < j ≤ t′i,

lij /∈ V (P ′i−1). Di = {pi1, pi2, . . . , piti} is constructed as
follows:

– If t′i is an even number, then ti =
t′i
2 , and pij (1 ≤

j ≤ ti) is a TwinTwig with root ri and two leaves
li2j−1 and li2j .

– If t′i is an odd number, then ti =
t′i+1
2 , and pij (1 ≤

j ≤ ti−1) is a TwinTwig with root ri and two leaves
li2j−1 and li2j , and piti is a TwinTwig with only one

edge (ri, lit′i
).

In other words, Di is constructed by generating strong
TwinTwigs followed by non-strong TwinTwigs. After
constructing Di for all 0 ≤ i ≤ t′, we have D by com-

bining all Di, i.e., D =
⋃t′
i=0Di. The construction of D

from D′ is illustrated in Fig. 4.
We show the instance optimality of a general

TwinTwig decomposition in the following theorem.

Theorem 1 Consider a pattern decomposition D′ =
{p′0, p′1, . . . , p′t′} where each p′i (0 ≤ i ≤ t′) is a star.
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Let D be the TwinTwig decomposition constructed based
on D′ using the above method. Under the assumption
A3, we have cost(D) ≤ Θ(cost(D′)).

5.3 Optimal Decomposition by A*

In this subsection, we will show how to construct an
optimal TwinTwig decomposition for any pattern graph
P using an A*-based algorithm.

The Cost Function. The key of the A*-based algo-
rithm is to find a cost function for each partial solu-
tion, which defines the priority of the partial solution
to be expanded to form the final solution. In the sub-
graph enumeration problem, for any partial TwinTwig
decomposition Di of P (refer to Definiton 6), we need
to define a cost function cost(Di, P ), which is the cost
lower bound for any TwinTwig decomposition of P ex-
panded from Di. We compute cost(Di, P ) using dy-
namic programming. Given a partial pattern Pi, we use
∆cost(Pi, ∆m,∆n) to denote the lower bound of the in-
creased cost when adding any ∆m edges and ∆n nodes
into the partial pattern Pi. Let card(m,n) = |R(P )| be
the number of matches of any connected pattern graph
P with m edges and n nodes, according to Lemma 1,
we have

card(m,n) = (2M)m/N2m−n. (5)

In the dynamic-programming algorithm, the initial
state is ∆cost(Pi, 0, 0) = 0, and according to Eq. 3, the
transaction function is formulated as

∆cost(Pi, ∆m,∆n) = min{∆cost(Pi, ∆m− a,∆n− b)
+ 3× card(|E(Pi)|+∆m, |V (Pi)|+∆n) + card(a, b)

+M | ∀1 ≤ a ≤ 2, 0 ≤ b ≤ a, a ≤ ∆m, b ≤ ∆n}.

The conditions 1 ≤ a ≤ 2 and 0 ≤ b ≤ a are required to
guarantee that we join a TwinTwig each time. Accord-
ingly, cost(Di, P ) can be calculated as

cost(Di, P ) = cost(Di)+
∆cost(Pi, |E(P )| − |E(Pi)|, |V (P )| − |V (Pi|).

(6)

Note that ∆cost(Pi, ∆m,∆n) is only dependent on
|E(Pi)| and |V (Pi)|, thus we can denote ∆cost( Pi, ∆m,
∆n) of any Pi as:

∆cost(m′, n′, ∆m,∆n)

where m′ = |E(Pi)| and n′ = |V (Pi)|. As a
result, given a data graph G, we can precompute
∆cost(m′, n′, ∆m,∆n) for all possible m′, n′, ∆m, and
∆n, given that ∆cost(m′, n′, ∆m, ∆n) is query inde-
pendent. The time complexity and space complexity for
the precomputation are both O((m ·n)2), where m and
n are the upper bounds on m′ and n′ respectively. In

such a way, given any Di and P , suppose cost(Di) is
computed, then cost(Di, P ) can be computed in O(1)
time.

The Algorithm. The A* algorithm to compute the
optimal decomposition is shown in Algorithm 2. Let
H be a heap in which each entry has the form
(P ′,D′, cost(D′, P )), where P ′ is a partial pattern and
D′ is the corresponding partial TwinTwig decomposi-
tion. The top entry in H is a pattern decomposition
D′ with the minimum cost(D′, P ). The algorithm fol-
lows a typical A* framework that (1) iteratively pops
the minimum entry (line 4 and line 11), (2) expands
the entry with one TwinTwig (line 6), and (3) updates
the new entry if the corresponding partial pattern is al-
ready in H and current cost is smaller than the existing
one (line 8), or (4) pushes the new entry into H if the
corresponding partial pattern is not in H (line 10). The
algorithm stops when the popped partial pattern is the
pattern graph P (line 5) and returns the last popped
D′ as the optimal TwinTwig decomposition (line 12).

Algorithm 2: Optimal-Decomp( data graph G,
pattern graph P )

Input : G, The data graph,
P , The pattern graph.

Output : The optimal decomposition of P .

1 H ← ∅;
2 forall the TwinTwig p in P do
3 H.push((p, {p}, cost({p}, P )));

4 (P ′,D′, cost(D′, P ))←H.pop();
5 while P ′ 6= P do
6 forall the TwinTwig p with V (p) ∩ V (P ′) 6= ∅ and

E(p) ∩ E(P ′) = ∅ do
7 if H.find(P ′ ∪ p) 6= ∅ then
8 H.update(P ′ ∪ p,D′ ∪{p}, cost(D′ ∪{p}, P ));

9 else
10 H.push((P ′ ∪ p,D′ ∪{p}, cost(D′ ∪{p}, P )));

11 (P ′,D′, cost(D′, P ))←H.pop();
12 return D′;

Lemma 3 The space complexity and time complexity
of Algorithm 2 are O(2m) and O(d · m · 2m) respec-
tively, where d = maxv∈V (P ) d(v).

Discussion. In practice, the processing time for Algo-
rithm 2 is much smaller than O(d · m · 2m) since H
only keeps connected subgraphs of P that can poten-
tially result in the optimal solution.

5.4 Symmetry Breaking

In this subsection, we show how to use symmetry break-
ing to remove the assumption that the pattern graph
P has no non-trivial automorphism. When |A(P )| > 1,
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by directly applying Algorithm 1, each enumerated sub-
graph will be duplicated for |A(P )| times. The primary
goal is to effectively prevent duplicates (i.e., a subgraph
of a data graph will not be enumerated twice) while
not missing results. For this purpose, we implemented
the symmetry-breaking techniques introduced in [14].
Below we provide a brief description. We assume that
there is a total order (defined by ≺) among all nodes
in the data graph G. Symmetry breaking is then per-
formed by assigning a partial order (defined by < )
among some pairs of nodes in the pattern graph P .
Given such a partial order, a match is redefined as fol-
lows:

Definition 11 (Match) A match f from a pattern
graph P to a data graph G is a mapping from V (P ) to
V (G) that satisfies:

– (Conflict Freedom) The same as that in Definiton 1.
– (Structure Preservation) The same as that in Defini-

ton 1.
– (Order Preservation) For any pair of nodes vi ∈
V (P ) and vj ∈ V (P ), if vi < vj , then f(vi) ≺ f(vj).

Compared to Definiton 1, a new order-preservation con-
straint is added in the new definition of a match.

Example 6 The square given in Example 1 has 8 auto-
morphisms. Thus, each result subgraph will be dupli-
cated 8 times using Algorithm 1. For example, the 8
matches (u1, u2, u3, u4), (u2, u3, u4, u1), (u3, u4, u1,
u2), (u4, u1, u2, u3), (u4, u3, u2, u1), (u3, u2, u1, u4),
(u2, u1, u4, u3), and (u1, u4, u3, u2) all represent the
same subgraph with 4 edges (u1, u2), (u2, u3), (u3, u4),
and (u4, u1). Suppose u1 ≺ u2 ≺ u3 ≺ u4, by defining
a partial order: v1 < v2, v1 < v3, v1 < v4, and v2 < v4
in P , only one match (u1, u2, u3, u4) is left.

Algorithm 1 can be extended to handle the par-
tial order as follows: In the mapi phase, when com-
puting R(pi) (line 10, line 17), we make sure that each
match satisfies the order preservation constraint. In the
reducei phase, in line 22, we only output those f∪h that
satisfy the order preservation constraint. In Section 7.1,
we will discuss how to use the partial order to further
optimize the pattern decomposition.

6 Handling Power-Law Graphs

In this section, we will show how to adapt TwinTwigJoin
to the power-law graphs.

We model the data graph G of N nodes and
M edges as a power-law random graph according
to [3]. We consider a non-increasing degree sequence
{w1, w2, . . . , wN} that satisfies the power-law distribu-
tion, that is, the number of nodes with a certain degree

x is proportional to x−β , where β is the power-law ex-
ponent. For any pair of nodes ui and uj in a power-law
random graph, the edge between ui and uj is indepen-
dently assigned with probability Pi,j = wiwjρ, where
ρ = 1/ΣN

i=1wi = 1/2M . It is easy to verify that the ex-
pected degree of ui is equal to wi for any 1 ≤ i ≤ N . We
define the average degree as d = (ΣN

i=1wi)/N , and the
maximum degree as dmax. Note that we only consider
2 < β < 3 in this paper, as many real graphs have the
power-law exponent in this range [8,9]. We engage the
small-degree assumption A4 in this model as follows:

A4 : dmax ≤
√
N.

Though this assumption may not be satisfied in
some real graphs, in the experiment, we show the inter-
mediate results from the nodes with degree ≤

√
N play

a dominant role in the total intermediate results.

Instance Optimality. In order to show the instance
optimality of TwinTwigJoin in power-law graphs, we
prove that Theorem 1 holds in a power-law random
graph model under the small-degree assumption A4.
The detailed proof can be found in the appendix.

Optimal Decomposition. We show how to com-
pute the optimal TwinTwig decomposition using A* for
power-law random graph. Recall that Algorithm 2 is
independent of the graph model. It is only required to
compute cost(Di, P ), which is a cost lower bound for
any TwinTwig decomposition of P expanded fromDi. In
order to do so, we can simply set cost(Di, P ) = cost(Di),
where cost(Di) can be computed using Eq. 3, which de-
pends on |R(Pi)| and |R(pi)|. Here, |R(pi)| can be pre-
computed, and |R(Pi)| can be computed recursively us-
ing Eq. 11, where the value of each γ depends on how pi
is joined with Pi−1. Three typical cases for calculating
γ are given in Eq. 12, Eq. 13, and Eq. 14, respectively.
In this way, Algorithm 2 can be adopted to compute
the optimal TwinTwig decomposition for the power-law
random graph. The space and time complexities of the
algorithm are the same as those shown in Lemma 3.

Optimization. In the three optimization strategies
proposed in Section 7, workload skew reduction and
early filtering are independent to the graph model. In
order-aware cost reduction, reestimating |R(pi)| is also
independent to the graph model. Therefore, we only dis-
cuss how to reestimate |R(Pi)| in the power-law random
graph. In order to do so, suppose for a partial pattern
Pj with j < i, |R(Pj)| has been accurately calculated,
then for any future partial pattern Pi that is a super-
graph of Pj , |R(Pi)| can be calculated using Eq. 11 by
considering adding TwinTwigs into Pj iteratively. Here
how to compute γ after joining specific TwinTwigs is
discussed in the above paragraph.
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7 Optimization Strategies

In this section, we discuss three optimization strate-
gies to further improve our subgraph enumeration al-
gorithm, namely, order-aware cost reduction, workload
skew reduction, and early filtering.

7.1 Order-aware Cost Reduction

In this subsection, we discuss how to make use of the
partial order to further reduce the computational cost.
We first consider a motivating example: Let the pattern
graph P be a triangle of three nodes v1, v2, and v3, with
v1 < v2 < v3 for symmetry-breaking. By TwinTwig de-
composition, P is decomposed into D = {p, e}, where
p is a two-edge TwinTwig, and e is a single edge. Ac-
cording to Eq. 1, we can derive cost(D) = 3|R(P )| +
|R(p)| + 2M . Since |R(P )| and M are fixed, cost(D)
is only dependent on p which has 3 choices: p1 = {(v1,
v2), (v1, v3)}, p2 = {(v1, v2), (v2, v3)}, and p3 = {(v1,
v3), (v2, v3)}. Let the data graph G be a star with a
root node r and N − 1 leaf nodes. Obviously, in such a
case |R(P )| = 0. Consider the following 3 cases C1, C2

and C3:

– C1: r has the largest order in V (G). In this case,
|R(p1)| = |R(p2)| = 0 and |R(p3)| = Θ(N2).

– C2: r has the smallest order in V (G). In this case,
|R(p1)| = Θ(N2) and |R(p2)| = |R(p3)| = 0.

– C3: r has the median order in V (G). In this case,
|R(p1)| = |R(p2)| = |R(p3)| = Θ(N2).

In both C1 and C2, we can find a p with |R(p)| = 0
which is optimal. This extreme example motivates us
to link the order of nodes in V (G) to their degrees.
Specifically, we assign a new total order of nodes in
V (G) by redefining the operator ≺ as follows:

Definition 12 (Operator ≺) For any two nodes ui
and uj in V (G), ui ≺ uj if and only if one of the two
conditions holds:

– d(ui) < d(uj),
– d(ui) = d(uj) and id(ui) < id(uj).

Where id(u) is the unique identity of node u (∈ V (G)).
Obviously, the operator ≺ specifies a total order for
nodes in V (G).

Given the new total order for V (G), for any u ∈ V (G),
we let N+(u) = {u′ | u′ ∈ N (u), u ≺ u′} and N−(u)
= {u′ | u′ ∈ N (u), u′ ≺ u}. We then define d+(u) =
|N+(u)| and d−(u) = |N−(u)|, and d+max = maxu∈V (G)

d+(u) and d−max = maxu∈V (G) d
−(u).

For a two-edge TwinTwig p = {(v, v1), (v, v2)}, we
consider the following three types of orders:

– T1: v < v1 < v2 or v < v2 < v1;
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Fig. 5 The order-aware decomposition of a 4-Clique.

– T2: v1 < v < v2 or v2 < v < v1;
– T3: v1 < v2 < v or v2 < v1 < v.

Let pT1 , pT2 , and pT3 be TwinTwigs of types T1, T2, and
T3 respectively. We have the following results:

– |R(pT1)| = O(Σu∈V (G)(d
+(u))2) = O(α ·M);

– |R(pT2)| = O(Σu∈V (G)(d
+(u) · d−(u))) = O(d+max ·

M);
– |R(pT3)| = O(Σu∈V (G)(d

−(u))2) = O(d−max ·M).

where α is the arboricity of the graphG and α≤ d+max ≤
d−max according to [7]. Thus, when selecting TwinTwigs
for joining, pT1 is preferable to pT2 , followed by pT3 .
We give an example below to show the three types of
TwinTwigs.

Example 7 Fig. 5 shows a 4-clique pattern graph P
with order v1 < v2 < v3 < v4, and two decomposition
plans D1 and D2, both of which are strong TwinTwig
decompositions. However, D1 contains two pT1s and one
pT2 , and D2 contains two pT2s and one pT3 . Obviously,
D1 is better than D2.

Order-aware TwinTwig Decomposition. We discuss
how to modify Algorithm 2 for TwinTwig decomposi-
tion by taking the partial order into consideration. Re-
call that Algorithm 2 only depends on the cost function
cost(Di, P ) (Eq. 6) for any partial TwinTwig decomposi-
tion Di, and cost(Di, P ) is calculated based on cost(Di)
and ∆cost(Pi, ∆m,∆n), both of which are originated
from Eq. 1. Thus, we only need to reestimate |R(pi)|
and |R(Pi)| for any pi and partial pattern Pi by taking
the partial order into consideration.

(Reestimate |R(pi)|): Let pi = {(v, v1), (v, v2)}.
In order to calculate |R(pi)|, we precompute |R(pT1)|,
|R(pT2)|, and |R(pT3)|. If pi only contains 1 edge, then
|R(pi)| = M ; otherwise, |R(pi)| can be calculated from
|R(pT1)|, |R(pT2)|, and |R(pT3)| depending on the par-
tial orders defined on V (pi). For instance, if the partial
order is only defined on one pair v < v1 in pi, then
|R(pi)| can be calculated as 2 × |R(pT1)| + |R(pT2)|.
(Reestimate |R(Pi)|): |R(Pi)| is hard to calculate

when the partial order is involved, however, after each
round of join, we try to make use of the updated infor-
mation to better estimate |R(Pi)| at runtime. Specifi-
cally, after the j-th round of join, suppose the current
partial pattern is Pj , and |R(Pj)| has been accurately
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calculated. Then for any possible future partial pattern
Pi which is a supergraph of Pj , according to Eq. 8,
|R(Pi)| can be calculated as:

|R(Pi)| = |R(Pj)|×(
2M

N2
)|E(Pi)|−|E(Pj)|×N |V (Pi)|−|V (Pj)| (7)

Based on the reestimating technique, Algorithm 1 is
modified as follows: In the first round, it computes the
optimal decomposition plan using the A* algorithm
(Algorithm 2) directly, and then processes the first
MapReduce round accordingly. In the following round
i (i > 1), before processing MapReduce, the algorithm
recomputes the optimal decomposition using the A*
algorithm with the reestimating technique where each
|R(Pj)| for 0 ≤ j < i is replaced by the accurate value.
In this way, the partial order is involved in Algorithm 1.

7.2 Workload Skew Reduction

For many real graphs, it is very common that a small
number of nodes in a graph have very high degrees.
Given a data graph G, we denote the high-degree nodes
by V H (e.g., nodes with degree larger than

√
M). Recall

that G is stored in a distributed file system using ad-
jacency lists in the form (u;N (u)) for each u ∈ V (G).
For a two-edge TwinTwig p, evaluating p on the ad-
jacency list (u;N (u)) will generate Θ(d(u)2) matches,
rendering very high workloads in the machines that are
processing high-degree nodes. This motivates us to con-
sider the workload balancing issue. In the following, we
discuss our strategy to reduce the workload skew.

Suppose there are λ machines in the system, for any
u ∈ V H , instead of using (u,N (u)), we divide N (u)
uniformly into β partitions: N (u) = {N1(u), N2(u),
. . . , Nβ(u)}. Note that we cannot simply distribute the
β partitions into the λ machines. Because if so, given
a TwinTwig p = {(v, v1), (v, v2)}, the match f = (u,
u1, u2) ∈ R(p) with u1 ∈ Ni(u) and u2 ∈ Nj(u) (i 6= j)
cannot be generated by any machine. To handle this, we
create β×(β+1)

2 partitions in the following two sets S1(u)
and S2(u), and distribute the partitions uniformly into
the λ machines.

– S1(u) = {(u;Ni(u))|1 ≤ i ≤ β};
– S2(u) = {(u; (Ni(u),Nj(u)))|1 ≤ i < j ≤ β}.

With S1(u) and S2(u), when evaluating a TwinTwig
with one edge, only S1(u) needs to be used; and when
evaluating a TwinTwig with two edges, both S1(u) and
S2(u) need to be used. By setting β = Θ(

√
λ), the

number of partitions becomes Θ(λ). As a result, each
machine just keeps a constant number of partitions in
S1(u)∪S2(u) uniformly. It is easy to verify that the total
space used to keep S1(u) and S2(u) is Θ(

√
λ · |N (u)|).

7.3 Early Filtering

Recall that Algorithm 1 only requires very small mem-
ory in both mapi and reducei. This motivates us to make
use of the remaining memory for further optimization.
Specifically, we use bloom filter [6] to prune the invalid
partial matches in early stages of the algorithm to re-
duce the cost. Generally speaking, given a set S and
a memory budget M , a bloom filter for S denoted as
G(S), can be created using no more than M memory
such that given any element e, it can answer whether
e ∈ S with no false negatives and a small probability
of false positives denoted as fp . There is a trade-off
between the size of the memoryM and the probability
of false positives fp.

In our approach, we create a bloom filter G(E(G)) in
every machine of the system, and we use the bloom filter
G(E(G)) for the following two types of early filtering
mechanisms in Algorithm 1:

– (Map Side Filtering): When evaluating R(pi) for
any TwinTwig pi = {(v, v1), (v, v2)} in the map
phase, if (v1, v2) ∈ E(P ), then any match (u, u1,
u2) with (u1, u2) /∈ E(G) is pruned by G(E(G))
with probability 1− fp.

– (Reduce Side Filtering): When evaluating R(Pi) for
any partial pattern Pi in the reduce phase, for any
(v1, v2) ∈ E(P ) − E(Pi) with v1 ∈ V (Pi) and
v2 ∈ V (Pi), any partial match f ∈ R(Pi) with
(f(v1), f(v2)) /∈ E(G) is pruned by G(E(G)) with
probability 1− fp.

Obviously, early filtering does not affect the correctness
of Algorithm 1 since only invalid partial patterns are
pruned by the bloom filter G(E(G)). Note that early
filtering can be applied for all the three algorithms
EdgeJoin, StarJoin, and TwinTwigJoin.

Example 8 Suppose the pattern graph P is a triangle
of three nodes. We can decompose P into D = {p, e}
where p is a two-edge TwinTwig and e is a single edge.
According to Eq. 1, we have cost(D) = 3|R(P )| +
|R(p)|+ 2M . Without early filtering, it is possible that
|R(p)| dominates the whole cost with |R(p)| >> |R(P )|
and |R(p)| >> M . Suppose we use G(E(G)) with
fp = 0.1, then R(p) is filtered in the map phase with
only 0.1 ratio of false positives, i.e., |R(p)| = 1.1|R(P )|,
as a result |cost(D)| = Θ(|R(P )| + M), which is opti-
mal since M is the size of the input and |R(P )| is the
size of the final output.

8 Compressed Graph

By aggregating nodes that have the same neighbors into
a compressed node, we construct a compressed graph,
upon which the performance of subgraph enumeration
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is further improved. In this section, we will introduce
the MapReduce algorithm that correctly constructs the
compressed graph, and show that the algorithm has lin-
ear communication cost, and hence can scale to web-
scale real graphs. We will then discuss how to utilize
the join framework (Algorithm 1) to correctly process
the query upon the compressed graph.

To start, we define the Node Equivalence, Com-
pressed Node and Compressed Graph.

Definition 13 (Node Equivalence) Given two
nodes ui and uj in the data graph G, we say ui is
equivalent to uj , denoted ui ' uj , if and only if
N (ui) \ {uj} = N (uj) \ {ui}.

Given the node-equivalence relation, we partition
the data nodes into a set of equivalence classes.

Definition 14 (Compressed node) Given a data
graph G, the compressed node regarding u, denoted
S(u), represents a set of nodes in V (G) that are equiv-
alent to u (u included). We denote |S(u)| as the size of
the compressed node. A compressed node S(u) is triv-
ial if S(u) = {u}.

S(u) represents an equivalence class of u w.r.t. the
node-equivalence relation, and it is clear that S(u) =
S(u′) for any u′ ∈ S(u). We call the node with the min-
imum identity in S(u) the representative data node of
S(u), denoted as rS(u). For the ease of presentation, we
also use Sid(rS(u)) to denote S(u). It is worth noting that
the nodes inside a non-trivial compressed node S either
form a clique (mutually connected) or an independent
set (mutually disconnected). We use a field, S.clique,
to distinguish the two cases. Specifically, if the nodes in
S form a clique, we call S a clique compressed node and
set S.clique = true, otherwise, we call it an independent
compressed node and set S.clique = false. We also set
S.clique = false if S is trivial.

Definition 15 (Compressed Graph) Given a data
graph G = (V (G), E(G)), the compressed graph corre-
sponding to G is a graph G∗ = (V (G∗), E(G∗)), such
that,

– V (G∗) = {S(u) | u ∈ V (G)},
– E(G∗) = {(S(u),S(u′) ) | S(u),S(u′) ∈ V (G∗) ∧
S(u) 6= S(u′)∧(u, u′) ∈ E(G)}. Each edge in E(G∗)
is called a compressed edge.

We define the compressed neighbors of a compressed
node S in G∗ as N ∗(S) = {S ′ | (S,S ′) ∈ E(G∗)}.

Definition 16 (Compressed Node Order ≺∗)
Given two compressed nodes S(u) and S(u′) in V (G∗),
we say S(u) ≺∗ S(u′), if and only if rS(u) ≺ rS(u′)
(Definiton 12).

We then revise the total order ≺ (Definiton 12) as
≺′ in the data graph.

Definition 17 (Operator ≺′) For any two nodes ui
and uj in V (G), ui ≺′ uj if and only if one of the two
conditions holds:

– S(ui) ≺∗ S(uj),
– S(ui) = S(uj) and id(ui) < id(uj).

Example 9 In the data graph G presented in Fig. 6, we
have u1 ' u2 ' u3 and u5 ' u7. Hence the compressed
nodes are, S1 = S(u1) = {u1, u2, u3}, S4 = S(u4) =
{u4}, S5 = S(u5) = {u5, u7}, S6 = S(u6) = {u6} and
S8 = S(u8) = {u8}. Among the compressed nodes, we
have h1.clique = true, and false for the others. We then
construct the compressed graph G∗ by connecting the
compressed nodes. For example, (S1,S4) ∈ E(G∗) as
(u1, u4) ∈ E(G), and (S5,S6) ∈ E(G∗) as (u5, u6) ∈
E(G). It is clear that S5 ≺∗ S6 ≺∗ S1 ≺∗ S8 ≺∗ S4
regarding Definiton 16.

u1

u2 u3

u4

u5 u6

u7u8

u5 ≺ u6 ≺ u7 ≺ u1 ≺ u2 ≺ u3 ≺ u8 ≺ u4

S1 = {u1, u2, u3}

S4 = {u4} S8 = {u8}
S6 = {u6}

S5 = {u5, u7}

Data Graph Compressed Graph

Fig. 6 The Compressed node and compressed graph of the
Given Data Graph.

8.1 Constructing the Compressed Graph

We show how to construct the compressed graph cor-
responding to a given data graph G using MapRe-
duce. We divide the process into two steps, namely
Compressed-Node Generation and Compressed-Edge
Binding.

Compressed-Node Generation. Given a data graph
G and the corresponding compressed graph G∗, there
are three cases for a compressed node S ∈ V (G∗):

– If S is a clique compressed node, then ∀u, u′ ∈ S,
N [u] = N [u′], where N [u] = N (u) ∪ {u} is the
closured neighbors of u;

– If S is an independent compressed node, then
∀u, u′ ∈ S, N (u) = N (u′);

– If S is a trivial compressed node, then S = {u} for
some u ∈ V (G).

Intuitively, to compute the compressed nodes is to
aggregate the nodes that have the same (closured)
neighbors. Algorithm 3 describes the detailed algo-
rithm, in which we will attach the symbols “�”, “∴”
and “×” to indicate what kind of compressed node is
being processed, as shown in Table 1.
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Algorithm 3: ComprNodeGen( data graph G)

Input : G, The data graph,
Output : V (G∗), The compressed node set.

1 function map1( key: u; value: N (u) )

2 if d(u) ≤
√
M then output (N [u]; u);

3 else output ({$}; u);

4 function reduce1( key: U ; value:
S = {us1 , us2 , . . . , usk}, where us1 ≺ us2 , · · · ≺ usk )

5 if V = {$} then
6 foreach u ∈ S do
7 output (u; (∴, {u}));

8 else
9 if |S| > 1 then

10 output (us1 ; (�, S));

11 else output (us1 ; (×, S = {us1}));

12 function map2( key: u; value: N (u) )

13 if d(u) ≤
√
M then output (N (u); u);

14 function reduce2( key: U ; value:
S = {us1 , us2 , . . . , usk}, where us1 ≺ us2 · · · ≺ usk )

15 if |S| > 1 then
16 output (us1 ; (∴, S));

17 else output (us1 ; (×, S = {us1}));

18 function map3( key: u; value: (x, S), where
x ∈ {∴,�,×}, u ∈ S)
// map3 reads both the outputs of reduce1 and

reduce2 as input.

19 output (u; (x, S));

20 function reduce3( key: u; value: {(x1, S1), [(x2, S2)]?},
where x1, x2 ∈ {∴,�,×} )

21 Create compressed node S(u) = S1;
22 if There are two values in the value list then
23 if x1 6= � then S(u).clique← false;
24 else S(u).clique← true;
25 Output (u; S(u));

26 else if x1 = ∴ then
27 S(u).clique← false;
28 Output (u; S(u));

Table 1 The symbols “�”, “∴” and “×” and their descrip-
tions.

Symbols Description

� A clique compressed node
∴ An independent compressed node
× Cannot determine in the context

The algorithm processes three rounds. In the first
round, we aggregate the nodes that have the same clo-
sured neighbors by making N [u] for each u ∈ V (G) as
map1’s output key 1. If there are more than one node
gathered in the reduce1 function (|S| > 1), we output
the set of nodes S with us1 as the key and the symbol
“�” (line 10), indicating that S must form a clique com-
pressed node with us1 as its representative node (the

1 Note that we apply a threshold
√
M in line 2 and line 13,

and we will discuss the threshold later. Let’s first assume that
there is no threshold.

minimum node in the compressed node). Otherwise, we
cannot determine whether the compressed node of us1
is independent or trivial at current stage, we associate
the output with a “×” (line 11). In the second round,
the algorithm is more or less the same, but we aggregate
the nodes via the neighbors of each node. Those nodes
gathered by reduce2, if more than one, must form an in-
dependent compressed node, and we associate the out-
put with a “∴” (line 16), otherwise, a “×” is attached
similar to the first round (line 17). To summarize, the
outputs of a node u in reduce1 and reduce2, denoted
as out1(u) and out2(u), are related to the kinds of the
compressed node of u. We have:

Proposition 1 Given u ∈ V (G) and its compressed
node S(u), we have

(i) S(u) is a trivial compressed node if and only if

out1(u) = (u; (×, {u})), out2(u) = (u; (×, {u})).
(ii) S(u) is a clique compressed node if and only if

out1(u) =

{
(u; (�,S(u))), u = rS(u)
∅, otherwise

,

out2(u) = (u; (×, {u})).
(iii) S(u) is an independent compressed node if and

only if

out1(u) = (u; (×, {u})),

out2(u) =

{
(u; (∴,S(u))), u = rS(u)
∅, otherwise

Based on Proposition 1, we generate the compressed
nodes in the third round. The map3 function directly
outputs out1(u) and out2(u) for each u ∈ V (G). Given
different kinds of S(u), we will expect one or two values
in reduce3. Note that we use [X]? to indicate that X
may not present in the value list in the reduce function.
We assume that the value with “∴” and “�” will appear
in the value list before the one with “×”. If there are two
values, u either belongs to a trivial compressed node,
or u is the representative node of the corresponding
compressed node. We will output the compressed node
after properly setting S(u).clique (line 23-25) 2.

Next we show the correctness of Algorithm 3.

Lemma 4 Algorithm 3 returns each compressed node
once and only once.

Example 10 Following Example 9, we trace the outputs
of node u1 in each stage to show how Algorithm 3 runs.
To start, map1 outputs (N [u1] = {u1, u2, u3, u4};u1)
for u1 (line 2). In reduce1, S = {u1, u2, u3} is gath-
ered on the key N [u1], and (u1; (�, {u1, u2, u3})) is
output by the reducer (line 10). In the second round,

2 Line 26-28 deal with the node with degree larger than the
threshold (line 2,13).
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map2 outputs (N (u1) = {u2, u3, u4};u1) (line 13).
On the key {u2, u3, u4}, reduce2 receives S = {u1},
thus the algorithm outputs (u1; (×, {u1})) (line 17).
After reduce3 receives both (u1; (�, {u1, u2, u3})) and
(u1; (×, {u1})) for u1 (line 20), the clique compressed
node S1 = S(u1) = {u1, u2, u3} is constructed (line 22-
25). The procedures for the other nodes are similar, and
we finally compute the five compressed nodes shown in
Example 9.

Handling large-degree node. The node u with d(u) ≥√
M will be directly assigned to a trivial compressed

node in Algorithm 3 (line 26-28). We apply this thresh-
old to avoid a very large key that can trigger over-
whelming sort cost. We show that it is highly impossible
for such a node to have another equivalent node using
the power-law random graph model (refer Section 6).
We assume that u connects a set of nodes that have
the same degree d̂. It is clear that d̂ < 2M/d(u). We
now calculate the the probability pr that there exists
another node u′ connecting to all u’s neighbors in a
power-law random graph as

pr < (
d̂ d(u)

2M
)d(u).

It is clear that d̂ d(u)
2M < 1 in a power-law random

graph. We hence have pr ≈ 0 when d(u) is large enough
(e.g. d(u) >

√
M for a large data graph). We fur-

ther show in the experiment that we can almost obtain
the compressed graph by using such a threshold in all
datasets.

Algorithm 4: ComprEdgeBind( data graph G,
The compressed node set V (G∗))

Input : G, The data graph;
V (G∗), The compressed nodes, stored as

(rS ;S) for each S ∈ V (G∗).
Output : G∗, The compressed graph.

1 function map11( key: u; value: N (u) )
2 output (u; N (u));

3 function map12( key: rS ; value: S )
4 output (rS ; S);

5 function reduce1( key: u; value: {[S(u)?],N (u)} )
6 if S(u) exists in the value list then output

(S(u); N o(S(u)) = N (u) \ S(u));

7 function map21( key: S; value: N o(S) )
8 for each u′ ∈ N o(S) do output (u′; (→,S));

9 function map22( key: rS ; value: S )
10 output (rS ; (∈,S));

11 function reduce2( key: u; value:
{[(∈,S(u))?], [(→,S(u′))?]} )

12 if both (∈,S(u)) and (→,S(u′)) exist in the value list then
13 if S(u) ≺∗ S(u′) then output (S(u); S(u′));

Compressed-Edge Binding. Given the compressed
nodes, we can construct the compressed graph by bind-

ing the compressed edges. The procedure is shown in
Algorithm 4. We define the original neighbors of a
compressed node S(u) as

N o(S(u)) = N (u) \ S(u).

We say a data node u “connects” a compressed node
S(u′) if S(u) 6= S(u′) and (u, u′) ∈ E(G). The original
neighbors of S(u) contains all data nodes that “con-
nect” S(u). For all u′ ∈ N o(S(u)), it is obvious that
(S(u),S(u′)) ∈ E(G∗). In Algorithm 4, we use the sym-
bol “→” (resp. “∈”) to indicate that a data node con-
nects (resp. belongs to) a compressed node. There are
two rounds of executions in the algorithm. In the first
round, the map function processes two inputs, namely
(u;N (u)) for all u ∈ V (G) (line 1), and (rS ;S) for all
S ∈ V (G∗) (line 3). The reduce1 function then com-
putes the original neighbors for each compressed node
(line 6). In the second round, the map21 function takes
(S,N o(S)) for all S ∈ V (G∗) as input, and outputs
(u′; (→,S)) for each u′ ∈ N o(S), indicating u′ “con-
nects” S (line 8). In addition, map22 reads (rS ,S) for all
S ∈ V (G∗) and outputs (rS ; (∈,S)) (line 10).

When the above two key-value pairs associated with
the same u, namely (u; (→,S(u′))) and (u; (∈,S(u′))),
arrive in reduce2, we can determine that (S(u),S(u′)) ∈
E(G∗) (line 13).

Lemma 5 Algorithm 4 returns all compressed edges.

Example 11 We have generated the compressed nodes
in Example 10, we use (S1,S4) as an example to show
how to bind the compressed edges via Algorithm 4.
Note that all other compressed edges are handled in
a similar way. In the first round, map11 and map12 out-
put (u4;N (u4) = {u1, u2, u3, u8}) and (u4;S4 = {u4})
on the key u4, respectively. The reduce1 immediately
computes N o(S4) = N (u4) \ S4 = {u1, u2, u3, u8}.
In the second round, on the one hand, map21 emits
(u1; (→,S4)) indicating that u1 connects S4; on the
other hand, map22 outputs (u1; (∈,S1)). On the key u1,
reduce2 discovers the compressed edge (S1,S4).

Complexities. Based on Lemma 4 and Lemma 5, we
have correctly built the compressed graph. Next we
show that the communication cost of constructing the
compressed graph is linear to the size of the data graph.

Lemma 6 Given the data graph G, the communica-
tion cost of constructing the compressed graph of G is
O(M +N), where M = |E(G)|, and N = |V (G)|.

8.2 Querying the compressed graph

We follow the join framework in Algorithm 1 to pro-
cess subgraph enumeration on the compressed graph.
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Considering that a compressed node can now relate to
multiple data nodes, we need to accordingly redefine the
matches so that we can adapt Algorithm 1 to query the
compressed graph. We first introduce the Compressed
Match.

Definition 18 (Compressed Match) Given a pat-
tern graph P and a compressed graph G∗, a compressed
match f∗ is a mapping from V (P ) to V (G∗) such that
the following three conditions hold:

– (Structure Preservation) For any edge (vi, vj) ∈
E(P ), either (f∗(vi), f

∗(vj)) ∈ E(G∗) if f∗(vi) 6=
f∗(vj), or f∗(vi).clique = true if f∗(vi) = f∗(vj).

– (Size Limitation) For vi1 , vi2 , . . . , vik ∈ V (P ), if
f∗(vi1) = f∗(vi2) · · · = f∗(vik), then k ≤ |f∗(vi1)|.

– (Order Preservation) For any pair of nodes vi ∈
V (P ) and vj ∈ V (P ), if vi < vj and f∗(vi) 6= f∗(vj),
then f∗(vi) ≺∗ f∗(vj).

We use f∗ = (Sk1 ,Sk2 , . . . ,Skn) to denote the match
f∗, i.e., f∗(vi) = Ski for any 1 ≤ i ≤ n.

It is worth noting that a compressed node S can now
be matched up to |S| pattern nodes by a compressed
match. Consider a pattern graph P = (v1, v2, . . . , vk),
a data graph G and its compressed graph G∗. We show
how f and f∗ can be converted to each other as follows:

– f → f∗: Given a match of P in G, f =
(u1, u2, . . . , uk), and a bijective mapping σ where
σ(u) = S(u), we obtain a compressed match of P in
G∗ as: f∗ = f ◦ σ = (S(u1),S(u2), . . . ,S(uk)).

– f∗ → f : Given a compressed match of P in G∗, f∗ =
(S1,S2, . . . ,Sk), and a bijective mapping σ′ where
σ′(Si) = u under the conditions that: (1) u ∈ Si, (2)
σ′(Sj) 6= u, for any j 6= i, and (3) σ′(Si) ≺′ σ′(Sj)
if vi < vj , or σ′(Sj) ≺′ σ′(Si) otherwise, we obtain
a match of P in G as: f = f∗ ◦ σ′.

When dealing with f∗ → f , we replace each compressed
node with one data node that satisfies all the above
three conditions. The first condition says we only re-
place each compressed node by one of the data nodes
inside it. The second condition indicates that we can
only replace the compressed node by a data node that
has never been used. The third condition guarantees
the Order-Preservation constraint for a match. Note
that we use the revised total order ≺′ (Definiton 17).
Clearly, a compressed match can be mapped to multiple
matches.

Example 12 Consider the square pattern graph given
in Fig. 1. There are four matches of the square
in the data graph presented in Fig. 6. They are:
f1 = (u1, u2, u3, u4), f2 = (u1, u3, u2, u4), f3 =
(u1, u2, u4, u3) and f4 = (u5, u6, u7, u8). Meanwhile,
we find three compressed matches. They are: f∗1 =
(S1,S1,S1,S4), f∗2 = (S1,S1,S4,S1) and f∗3 =

(S5,S6,S5,S8). Among them, f∗1 compresses f1 and f2,
f∗2 relates to f3, and f∗3 relates to f4.

Computing the compressed matches. As long as
the compressed matches are given, it is trivial to re-
cover the original matches, following the three condi-
tions discussed in f∗ → f . We hence focus on the al-
gorithm - SubgEnumCompr - that computes the com-
pressed matches of P in G∗.

SubgEnumCompr follows the join framework in Al-
gorithm 1. Recall that in Algorithm 1, with the pat-
tern graph decomposing into D(P ) = {p0, p1, . . . , pt},
we enumerate the subgraph using t rounds of MapRe-
duce. In the ith round, the following join is processed:

R(Pi) = R(Pi−1) 1 R(pi)

To process the above join, the ith round MapReduce
routine in Algorithm 1 will (1) compute the join at-
tributes as V (Pi−1)∩V (pi); (2) read the partial matches
R(Pi−1) (computed in previous round) and map each of
them according to the join key; (3) read (u;N (u)) for
each u ∈ V (G), use them to compute R(pi), and map
R(pi) to the corresponding join key; (4) process the join
by filtering the results of R(Pi−1) × R(pi) according
to the Conflict-Freedom and Order-Preservation con-
straints of Definiton 11.

Denote R∗(P ) as the set of compressed
matches. Given the same pattern decomposition,
the SubgEnumCompr iteratively processes the following
join using MapReduce:

R∗(Pi) = R∗(Pi−1) 1 R∗(pi).

In order to do so, SubgEnumCompr follows the above
four steps as Algorithm 1, but handles the compressed
matches instead. Specifically, step (1) remains the same.
In step(2) SubgEnumCompr processes R∗(Pi−1), while
in step (3), it generates the compressed matches R∗(pi)
of TwinTwig pi. Finally, in step (4), SubgEnumCompr fil-
ters the results based on the Size-Limitation and Order-
Preservation constraints in Definiton 18.

We first discuss how SubgEnumCompr computes
R∗(p) in step (3) for a TwinTwig p on the com-
pressed graph. For ease of presentation, we assume
that p is a two-edge TwinTwig (the one-edge case can
be done analogously). Let p = ((v0, v1), (v0, v2)). De-
note R∗S(p) = {f∗ | f∗(v0) = S} as the S-specific
compressed matches for some S ∈ V (G∗). Suppose
G∗ is stored in the form of (S;N ∗(S)) for each S ∈
V (G∗). SubgEnumCompr then computes R∗S(p) on each
(S;N ∗(S)) independently, using the algorithm in Algo-
rithm 5.

Corollary 2 Given a TwinTwig p and any compressed
node S ∈ V (G∗), Algorithm 5 correctly computes
R∗S(p). Further, R∗(p) =

⋃
S∈V (G∗)R

∗
S(p).
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Algorithm 5: ComprMatch ( (S;N ∗(S)), p )

Input : (S;N ∗(S)): The compressed neighbors of
S, where N ∗(S) = {Si1 ,Si2 , . . . ,Sit},
p = ((v0, v1), (v0, v2)): A two edge TwinTwig.

Output : R∗S(p): The S-specific compressed matches
of p.

1 RS(p)← ∅
2 if |S| ≥ 3 and S.clique = true then
RS(p) = RS(p) ∪ { (S,S,S) };

3 for j ∈ {1, 2, . . . , t} do
4 if |S| ≥ 2 and S.clique = true then

RS(p) = RS(p) ∪ { (S,S,Sij ), (S,Sij ,S) };
5 if |Sij | ≥ 2 then RS(p) = RS(p) ∪ { (S,Sij ,Sij ) };
6 for k ∈ {j + 1, . . . , t} do
7 RS(p) = RS(p) ∪ { (S,Sij ,Sik ), (S,Sik ,Sij ) };

8 return RS(p);

We then formally show that SubgEnumCompr is cor-
rect by iteratively processing the join of compressed
matches.

Lemma 7 Given the pattern graph P , and the com-
pressed graph G∗, SubgEnumCompr correctly computes
all compressed matches.

Example 13 Consider the square pattern in Fig. 1.
The partial order is v1 < v2 < v4 and v1 < v3.
We show how to process the SubgEnumCompr algo-
rithm on the compressed graph in Fig. 6. The square
is partitioned into p0 = {(v1, v2), (v1, v4)} and p1 =
{(v3, v2), (v3, v4)}. Suppose we match the compressed
node to V (p0) in the order (v1, v2, v4), and V (p1) in
the order (v3, v2, v4). According to Algorithm 5, we
find three compressed matches of p0 in the compressed
graph, namely (S1,S1,S1), (S1,S1,S4) and (S5,S6,S8).
And we find eight compressed matches of p1. They
are (S1,S1,S1), (S1,S1,S4), (S4,S1,S1), (S4,S1,S8),
(S8,S4,S5), (S8,S5,S5), (S5,S6,S8) and (S6,S5,S5).
To explain how the join is processed, we discuss the
following three join keys:

– (S1,S1): The reducer processes one partial result
of p0 - (S1,S1,S1), and two partial results of p1 -
(S1,S1,S1) and (S4,S1,S1). They are joined to pro-
duce the compressed matches f∗1 = (S1,S1,S1,S1)
and f∗2 = (S1,S1,S4,S1). Among them, f∗1 is not
a valid compressed match as it violates the Size-
Limitation constraint.

– (S1,S4): The reducer processes one partial result
of p0 - (S1,S1,S4), and one partial result of p1 -
(S1,S1,S4). They are joined to produce the com-
pressed match (S1,S1,S1,S4).

– (S6,S8): The reducer processes one partial result
of p0 - (S5,S6,S8), and one partial result of p1 -
(S5,S6,S8). They are joined to produce the com-
pressed match (S5,S6,S5,S8).

After we obtain the compressed matches, we resolve
them to the original matches, as shown in Table 2.

Table 2 Resolve compressed matches to the original matches.

compressed match Original Match

(S1,S1,S4,S1) (u1, u2, u4, u3)
(S1,S1,S1,S4) (u1, u2, u3, u4), (u1, u3, u2, u4)
(S5,S6,S5,S8) (u5, u6, u7, u8)

9 Performance Studies

In this section, we show our experimental results. We
deployed a cluster of up to 15 computing nodes includ-
ing one master node and 14 slave nodes and we used 10
slave nodes by default. Each of the computing nodes
has one 3.47GHz Intel Xeon CPU with 6 cores and
12GB memory running 64-bit Ubuntu Linux. We al-
located a JVM heap space of 1024MB for each mapper
and 2048MB for each reducer, and we allowed at most
3 mappers and 3 reducers running concurrently in each
machine. The block size in HDFS was set to be 128MB,
the data replication factor of HDFS was set to be 3, and
the I/O sort size was set to be 512MB.

Datasets. We used five real-world data graphs (see Ta-
ble 3) for testing. Among them, sk, lj, orkut, and fs were
downloaded from SNAP (http://snap.stanford.edu), yt
was downloaded from KONECT (http://konect.uni-
koblenz.de), and uk, indo and arabic were downloaded
from WEB (http://law.di.unimi.it). The “rv” and “re”
columns in Table 3 represent the node-compression ra-
tio of and edge-compression ratio, and are computed
as rv = |Vh|

|V | and re = |Eh|
|E| , respectively. The “time

/ s (MR)” and “time / s (Ren)” columns write the
processing time (in second) of constructing compressed
graph using MapReduce with 4 computing nodes and
the centralized algorithm given by [31]. Clearly, our
MapReduce implementation is far more efficient than
the centralized algorithm.

Algorithms. We implemented and compared seven al-
gorithms:

– Edge: EdgeJoin (Section 4) with early filtering (Sec-
tion 7.3).

– Mul: MultiwayJoin (Section 4).
– Star: StarJoin (Section 4) with early filtering (Sec-

tion 7.3).
– TTBS: TwinTwigJoin (Section 5) without optimiza-

tion.
– TTOA: TTBS + order-aware cost reduction (Sec-

tion 7.1).
– TTLB: TTOA + workload skew reduction (Sec-

tion 7.2).
– TT: TTLB + early filtering (Section 7.3).

All algorithms were implemented using Hadoop (ver-
sion 1.2.1) with Java 1.6. Note that the early filter-
ing strategy (Section 7.3) was also applied in Edge and
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Table 3 Datasets used in the experiments.

dataset name N = |V | M = |E| rv = |Vh|
|V | (%) re = |Eh|

|E| (%) time/s (MR) time/s (Ren)

as-skitter sk 1,696,415 11,095,298 74.87 90.98 145 2048
youtube yt 3,223,589 12,223,774 45.48 79.47 165 467

live-journal lj 4,847,571 42,851,237 77.37 95.16 179 1332
com-orkut orkut 3,072,441 117,185,083 97.73 99.94 222 7995

indochina-2004 indo 7,414,758 150,984,819 50.28 39.44 124 INF
uk-2002 uk 18,520,486 261,787,258 50.82 39.96 264 INF

friendster fs 65,608,366 1,806,067,135 65.31 99.66 2138 INF

Star, and all the optimization strategies introduced in
[1] were applied in Mul. We set the maximum running
time to be 12 hours. If a test does not stop in the time
limit, or fails due to out-of-memory exception, we de-
note the running time as INF. The time for computing
the join plan using Algorithm 2 for TwinTwig decom-
position is less than one second for all test cases, thus
it is omitted in the total processing time.

Queries. The seven queries denoted by q1 to q7 are il-
lustrated in Fig. 7 with edge number varying from 3 to
15 and node number varying from 3 to 6. We show the
node order for symmetry breaking under each query
graph. Here, we have n ≤ 5 for most queries for fair
comparison, because when n is larger than 5, except for
TT, all other algorithms have very poor performance,
which can be seen from the “vary-query” test for q6. In
this experiment, we only consider queries whose nodes
have degree at least 2 (the “closed” queries). Non-closed
queries like paths and stars often involve too many re-
sults, which can hardly be useful. For n = 4, we have
considered all closed queries (q1 - q4) with edge number
varying from 4 to 6 to test the influence of edge number
to the performance of different algorithms.
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v4 v1

v2 v3

v4 v1

v2 v3

v4
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Fig. 7 Queries used in the experiment.

Exp-1: Vary Algorithms. In this experiment, we
evaluated the performance of all seven algorithms us-
ing two query graphs q3 and q4 as representatives on
the two datasets, yt and lj. The experimental results
are shown in Fig. 8. We also list the size of the out-
put (see Table 4) generated by mappers and reducers
in each round when we processed q4 on lj. Here we use
“NA” to denote that the algorithm crashes due to out-
of-memory exceptions, and use “-” to denote that no
extra MapReduce round is needed. Note that we only
present the results of the first three rounds for Edge

which actually finishes in five rounds. The sizes of the
output produced by TTLB and TTOA are the same, and
thus we only show one of them. When evaluating q3 on
yt, we find that none of the algorithms can terminate
in the time limit without early filtering, since yt con-
tains a lot of high-degree nodes. Thus we applied early
filtering for both TTBS and TTOA in this case. The ex-
perimental results support our motivation to minimize
the cost discussed in Section 5.2, as lower cost generally
results in better performance.

As shown in Fig. 8, Mul fails in evaluating q3 on yt
and lj, and q4 on lj due to out-of-memory exceptions.
We analyze the reason below. Take the evaluation of q4
on lj for example. Mul outputs 0.9 billion data, which
is approximately 20 times larger than the size of the
data graph. Since we need to use auxiliary data struc-
tures such as hash tables to index these data, each of
which is represented by around 20 integers, rendering
70GB memory consumption. However, we only config-
ured 60GB memory for all reducers in the cluster (2GB
per reducer for 30 reducers). Therefore, Mul runs out
of memory.
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Fig. 8 The results of Exp-1: Vary Algorithms.

Table 4 The number of (intermediate) results for processing
q4 on lj (in billions).

m/r Edge Mul Star TTBS TTLB TT

map1 0.09 0.90 10.20 2.77 1.36 0.57
reduce1 0.29 NA 9.93 16.34 14.9 9.93

map2 0.33 - 9.98 21.55 16.27 10.22
reduce2 9.94 - 9.93 9.93 9.93 9.93

map3 9.98 - - - - -
reduce3 9.94 - - - - -

total 90.29 NA 40.07 50.59 42.49 30.67

Edge is slow and cannot finish in the time limit when
evaluating q3 on both yt and lj. This is because Edge
often generates numerous partial results in early stages
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even after filtering. As shown in Table 4, Edge has to
deal with over 9.9 billion data from the third round,
yet there are two more rounds to complete the task, in
which more partial results are generated.

In most cases, Star is slower than TTBS, which
demonstrates the instance optimality of TwinTwig de-
composition in Theorem 1. However, TTBS spends
much longer time than Star when evaluating q4 on yt.
This is because yt contains many high-degree nodes,
and TTBS (without any optimization) can generate
large number of partial results, while Star can avoid
this issue by applying the early filtering strategy.

TTOA performs better than TTBS in all cases,
which verifies the effectiveness of the order-aware cost
reduction strategy, and TTLB outperforms TTOA in
all cases, which is consistent with the analysis in Sec-
tion 7.2. TT consistently outperforms all other algo-
rithms for all test cases. Comparing TT to TTLB, we
observe from Table 4 that TTLB generates 10 billion
more data than TT, which shows the effectiveness of
early filtering. In the rest of the experiments, we exclude
the results of TTBS, TTOA, and TTLB, since their rel-
ative performances are similar to those shown in Fig. 8.
Therefore, we focus on comparing Edge, Star, and Mul
with our algorithm TT.

Exp-2: Vary Datasets. In this experiment, we tested
the algorithms on all the five datasets shown in Table 3
and show our results for query q1 and q4 for algorithms
Edge, Mul, Star, and TT.

Fig. 9(a) shows the testing results for query q1. Note
that for q1, star decomposition is the same as TwinTwig
decomposition, hence Star has the same performance as
TT, which outperforms Edge and Mul for over an order
of magnitude. Generally, Mul performs slightly worse
than Edge, except that Mul spends much longer time on
orkut. This is because orkut contains too many edges,
which results in a large number of edge duplications in
Mul. Edge and Mul cannot handle large data graphs uk
and fs.

The testing results for q4 are shown in Fig. 9(b).
TT is 5 times faster than Star on orkut, and is only
2 times faster than Star on lj. This is because that the
larger the average degree of the data graph is, the better
performance TT has over Star. The average degree of
orkut, which is 76, is larger than that of lj, which is
28. Hence, the results are expected. Another interesting
observation is when evaluating q4, it takes longer time
on uk than fs, while uk is much smaller than fs. The
reason is that, uk is a web graph, which contains a lot of
large cliques, since webpages in the same domain tend
to reference each other. On the contrary, fs is a social
network with fewer large cliques than a web graph.

Exp-3: Vary Queries. We evaluated all queries q1 to
q7 in Fig. 7. The results are illustrated in Fig. 10(a) to
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Fig. 9 The results of Exp-2: Vary Datasets

Fig. 10(g) respectively. Note that Star is the same as TT
when processing q1 and q2 since no node in q1 and q2
has degree larger than 2. Generally, the more complex
the pattern graph is, the more costly it is to evaluate
the query. TT performs the best in all test cases. Note
that all the tests are conducted on yt and lj except for
q5 and q6, which is conducted on yt and sk. The reason
is that, the number of results of q5 and q6 on lj is over
400 billion, which surpasses the processing ability of our
current cluster. However, we can scale to handle this
case by deploying more slave nodes. It is easy to find
that all algorithms except TT have very poor perfor-
mance while handling q6. Edge and Mul do not response
in time for both datasets. Star runs for over six hours
on sk, a dataset of moderate size. As for q7, a relatively
complicated query, TwinTwigJoin significantly outper-
forms all competitors, especially on the larger dataset lj,
where all algorithms except TwinTwigJoin cannot finish
in time.

Exp-4: Vary Graph Size. We extracted subgraphs of
20%, 40%, 60%, 80%, and 100% nodes from the origi-
nal graph of fs, and tested the algorithms using queries
q1 and q4. The results are shown in Fig. 11(a) and
Fig. 11(b) respectively. We omit the curve of Star in
Fig. 11(a) since Star is the same as TT when evaluating
q1. When the graph size increases, the running time of
Edge, Mul and Star grow much sharper than TT. When
the graph size is over 80%, only TT can finish in the
time limit. The testing results show the high scalability
of our TT algorithm.

Exp-5: Vary Average Degree. We fixed the set
of nodes and randomly sample 20%, 40%, 60%, 80%
and 100% edges from the original graph fs to generate
graphs with average degrees from 11 to 55, and tested
the algorithms using queries q1 and q4. The results are
shown in Fig. 12(a) and Fig. 12(b) respectively. We omit
the curve of Star in Fig. 12(a) since Star is the same as
TT when evaluating q1. Edge and Mul fail at the very
beginning. In Fig. 12(b), TT is 3, 5, 8 and > 9 times
faster than Star when the average degree varies from
11 to 55, which shows the advantage of TT for dense
data graphs. The trend is consistent with our theoreti-
cal analysis in Section 5.
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Fig. 10 The results of Exp-3: Vary Queries
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Fig. 11 The results of Exp-4: Vary Graph Size

Exp-6: Vary Slave Nodes. In this experiment, we
varied the number of slave nodes from 6 to 14, and
evaluated our algorithms on the lj and fs dataset using
query q4. The testing results are shown in Fig. 14(a)
and Fig. 14(b) respectively. As shown in Fig. 14(a),
when the number of slave nodes increases, the process-
ing time of all algorithms decreases, and the running
time drops more sharply when the number of slave
nodes is small. This is because that the increment of
slave nodes, on the one hand, contributes to the per-
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Fig. 12 The results of Exp-5: Vary Average Degree
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Fig. 13 The results of Exp-6: Vary Slave Nodes

formance improvement as workloads are more largely
shared, on the other hand, introduces extra commu-
nication cost as more data transmissions are involved
among slave nodes. As shown in Fig. 14(b), TT is the
only algorithm that can compute the 4-clique on fs even
when 14 slave nodes are deployed. We also performed
the tests using other queries when varying slave nodes.
The curves are similar to those in Fig. 12 thus are omit-
ted due to lack of space.

Table 5 The ratio of intermediate results that contain only
small-degree nodes (α).

queries / datasets sk yt lj

q1 0.740 0.784 0.971
q4 0.796 0.828 0.970

Exp-7: Small-Degree Assumption. In this exper-
iment, we show that the small-degree assumption A4

(refer Section 6) is useful in practice. We call a node u
with d(u) >

√
N a high-degree node. For a data graph

G, we create G∗ by iteratively removing some edges of
the high-degree nodes randomly until every node u in G
has d(u) ≤

√
N . We denote C and C∗ the cost (by Eq. 1)

when evaluating a specific pattern in the graph G and
G∗, respectively. And we denote α = C∗/C to show the
ratio of the cost that is only related to G∗ (in which
our algorithm can guarantee instance optimality). In
Table 5, we show the value of α when evaluating q1 and
q4 in the datasets sk, yt and lj, respectively. As we can
see, the cost in G∗ are actually the dominate part.

Exp-8: Compressed Graph. In Table 3, we observe
a more notable compression ratio of the compressed
graph built from uk, indo than the other graphs. The
reason is, to our best speculation, these two graphs are
web graphs, and the web pages from the same domain
often reference each other, which tends to forming large
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Table 6 Varying the degree threshold that makes us directly assign the node into a trivial compressed node.

datasets / threshold M0.25(%) M0.33(%) M0.5(%) M0.75(%)
ϕ0.25
v ϕ0.25

e ϕ0.33
v ϕ0.33

e ϕ0.5
v ϕ0.5

e ϕ0.75
v ϕ0.75

e

lj 99.9253 99.1485 99.9989 99.9661 100 100 100 100
orkut 99.9999 99.9997 100 100 100 100 100 100
indo 98.1274 53.7771 99.3620 56.6513 99.9995 99.4709 100 100
uk 98.4025 70.3885 99.5810 78.9369 99.9999 99.9940 100 100

cliques. We have found large compressed nodes in the
form of cliques in uk and indo of the size 943 and 6823,
respectively.

Recall that we will directly assign a node u with
d(u) >

√
M to a trivial compressed node (i.e. S(u) =

{u}). We varied the threshold as M0.25, M0.33, M0.5,
M0.75, M , and constructed the compressed graph ac-
cordingly in order to verify that

√
M is a reasonable

threshold in practice. Note that when the threshold is
equal to M , we obtain the exact compressed graph.
We use ϕiv (ϕie ) to represent the ratio of the number
of the exact compressed nodes (edges) over the num-
ber of compressed nodes (edges) when the threshold is
M i (for i ∈ {0.25, 0.33, 0.5, 0.75, 1}). We list the exper-
imental results for the datasets lj, orkut, indo and uk in
Table 6, which cover the cases of two non-web graphs
and two web graphs. We omit the other datasets as
they render similar results. Clearly, ϕ1

v = 100% and
ϕ1
e = 100%, hence they are not presented. As we can

see, when we set the threshold as M0.5, we can obtain
a compressed graph covering almost 100% compressed
nodes and 100% compressed edges in all the cases.
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Fig. 14 The results of Exp-8: Subgraph enumeration on the
Compressed Graph over the original graphs.

We next compared the running time of enumerat-
ing q1 and q4 by using TT on both the original data
graphs and the compressed graphs of lj, orkut, indo, uk
and fs. The results are shown in Fig. 14. The perfor-
mances are all improved when dealing with the com-
pressed graphs compared to the original graphs. The
improvement is especially remarkable for uk and indo.
As these two graphs are web graphs, some large cliques
inside them are potentially aggregated as compressed
nodes. We also show the size of the output data in Ta-
ble 7 for the datasets lj, uk and their compressed graphs
lj-h and uk-h, while enumerating q1 and q4. We ob-
tain a reduction of the output data as expected due to
the compression of the compressed graph. lj-h produces
13% less data in the enumeration of q1 and q4, while

uk-h, given a higher compression ratio as presented in
Table 3, produces 74.4% and 88.80% less data in the
enumeration of q1 and q4, respectively.

Table 7 Comparison of the size of the output data (in bil-
lions) while enumerating q1 and q4 on the original and com-
pressed graph.

queries m/r lj lj-h uk uk-h

q1
map1 0.33 0.29 4.71 1.30
reduce1 0.29 0.25 4.45 1.04
overall 0.62 0.54 9.16 2.34

q4

map1 0.57 0.51 8.90 2.09
reduce1 9.94 8.50 157.20 17.55
map2 10.23 8.76 161.65 18.60
reduce2 9.93 8.50 157.19 17.55
overall 30.67 26.67 484.95 55.78

10 Related Work

Subgraph Matching. Subgraph matching typically
studies labeled graphs. For example, Shang et al. [33]
proposed an algorithm to search from nodes with in-
frequent labels in order to utilize the filtering power
as early as possible. Node labels in the neighborhood
were utilized to filter unexpected candidates in [16] and
[41]. In [15], the authors observed that a good matching
order can significantly improve the performance of sub-
graph query. Inexact subgraph matching was also stud-
ied in [19], and [12]. Lee et al. [21] provided an in-depth
comparison of subgraph isomorphism algorithms. Very
recently, Ren et al. [31] has boosted subgraph matching
by exploiting the node relationships in the data graph.
In the label-unaware context, subgraph matching is of-
ten referred as subgraph enumeration. The centralized
algorithms were studied in exact and approximate set-
tings. The exact solutions including [7] and [14] are not
scalable to handle large data graphs. The approximate
solutions [4,13,42] only estimate the count rather than
locate all the subgraph instances.

Massive Subgraph Matching. Processing subgraph
matching in massive graphs has always been a hot topic
due to its urgent needs. Zhao et al. [42] introduced a
parallel color coding method for subgraph counting. Ma
et al. [24] studied inexact graph pattern matching based
on graph simulation in a distributed environment. Gon-
zalez et al. reported an experimental result on triangle
counting in PowerGraph [17]. Recently, Sun et al. [35]
proposed a subgraph matching algorithm to handle la-
beled graphs in the Trinity memory cloud. Graphlet, a



22 Longbin Lai et al.

small induced subgraph that appears frequently in the
data graph, also attracts many attentions. Ahmed et
al. [2] proposed a parallel algorithm to efficiently count
graphlets in a large network. Rahman et al. [30] devel-
oped the GRAFT to count the graphlets in an approxi-
mation manner. We have shown that our algorithm can
be adapted to handling induced subgraph.

Subgraph Matching in MapReduce. MapReduce
has been utilized to solve a lot of graph-related prob-
lems, among which subgraph enumeration (matching)
has attached lots of interests. Tsourakakis et al. [37]
proposed an approximate triangle counting algorithm
using MapReduce. Suri et al. [36] introduced a MapRe-
duce algorithm to compute exact triangle counting.
Afrati et al. [1] proposed multiway join in MapReduce
to handle subgraph enumeration. Plantenga [28] intro-
duced an edge join method in MapReduce which can
be used for subgraph enumeration. Both [1] and [28]
have been introduced in details in Section 4. More-
over, the major results of this paper has appeared in
the conference version [20]. Another related domain is
frequent subgraph mining, which aims at enumerating
all subgraphs whose appearances exceed a given thresh-
old. Researchers solved this problem using MapReduce
for efficiency and scalability considerations. Lin et al.
[23] proposed the first MapReduce algorithm to search
frequent subgraphs. Bhuiyan et al. [5] implemented the
frequent subgraph mining algorithm based on an itera-
tive MapReduce framework.

11 Conclusions

In this paper, we study scalable subgraph enumer-
ation in MapReduce, considering that existing so-
lutions for subgraph enumeration are not scalable
enough to handle large graphs. We proposed a new
TwinTwigJoin algorithm based on a left-deep-join
framework in MapReduce. In the Erdös-Rényi random-
graph model, we showed that under reasonable assump-
tions, TwinTwigJoin is instance optimal in the left-deep-
join framework. An A*-based solution was given to
compute the optimal join plan. In order to cover real-life
applications where most graphs are power-law graphs,
we proved the instance optimality of TwinTwigJoin
based on the power-law random-graph model. We also
improved our approach using three novel optimization
strategies. Ultimately, we further improved the algo-
rithm by constructing the compressed graph regarding
the equivalence relationships among the data nodes. We
conducted extensive performance studies on real large
graphs with up to billions of edges to demonstrate the
effectiveness of our approach.
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APPENDIX

A.1 Proofs in Section 5

Proof of Lemma 2 (Section 5.2). Suppose Pi contains ni

nodes and mi edges, we have |R(Pi−1)| = (2M)
mi−1

N
2mi−1−ni−1

and

|R(Pi)| = (2M)mi

N2mi−ni
. Let ∆mi = mi −mi−1 and ∆ni = ni −

ni−1, we have

|R(Pi)| = |R(Pi−1)| × (
2M

N2
)∆mi ×N∆ni . (8)

Since D is a strong TwinTwig decomposition, there are three
cases for pi (1 ≤ i ≤ t):
– (|E(pi)| = 1 and |V (pi) ∩ V (Pi−1)| = 2): In this case,
∆mi = 1 and ∆ni = 0. It follows that

|R(Pi))| = |R(Pi−1)| ×
2M

N2
< |R(Pi−1)| ×

(2M)2

N3
.

– (|E(pi)| = 2 and |V (pi) ∩ V (Pi−1)| = 2): In this case,
∆mi = 2 and ∆ni = 1. It follows that

|R(Pi))| = |R(Pi−1)| × (
2M

N2
)2 ×N = |R(Pi−1)| ×

(2M)2

N3
.

– (|E(pi)| = 2 and |V (pi) ∩ V (Pi−1)| = 3): In this case,
∆mi = 2 and ∆ni = 0. It follows that

|R(Pi))| = |R(Pi−1)| × (
2M

N2
)2 < |R(Pi−1)| ×

(2M)2

N3
.

In all the above three cases, we have |R(Pi)| ≤ |R(Pi−1)| ×
(2M)2

N3 . As a result, |R(Pi)| ≤ |R(Pi−1)| × (2M)2

N3 ≤ |R(Pi−2)|
× ( (2M)2

N3 )2 ≤ . . . ≤ |R(p0)| × ( (2M)2

N3 )i. 2

Proof of Corollary 1 (Section 5.2). By the assumption A3

(d = 2M/N <
√
N), we know that (2M)2

N3 = d2

N
< 1. It is

immediate that Corollary 1 holds according to Lemma 2. 2

Proof of Theorem 1 (Section 5.2). For any pattern decom-
position D, we divide cost(D) = 3Σti=1|R(Pi)|+Σti=0|R(pi)|+
t|E(G)| (Eq. 1) into two parts:

– cost1(D) = Σti=0 |R(pi)| + t|E(G)|.
– cost2(D) = 3 Σti=1 |R(Pi)|.

Accordingly, we divide the proof into two parts:

(Part 1): We prove cost1(D) ≤ Θ(cost1(D′)). We only need
to prove cost1(Di) ≤ Θ(cost1({p′i})) for each 0 ≤ i ≤ t′. Note
that when |E(p′i)| ≤ 2, cost1(Di) = cost1({p′i}), thus, we only
consider |E(p′i)| ≥ 3. In this case, we have:

– cost1(Di) ≤ Θ(t′i ·d2 ·N). According to Lemma 1, we know
that each pattern pij ∈ Di is a TwinTwig with |R(pij)| ≤
(2M)2

N
= Θ(d2 ·N). Hence, we have

cost1(Di) = Σ
dt′i/2e
j=1 (|R(pij)|+ |E(G)|) ≤ Θ(t′i · d2 ·N).

– cost1({p′i}) ≥ Θ(t′i · d3 ·N). This is because

cost1({p′i}) ≥ |R(p′i)| = dt
′
i ×N ≥ (t′i − 2)× d3 ×N

≥ t′i/3× d3 ×N (by t′i = |E(p′i)| ≥ 3)

= Θ(t′i · d3 ·N).

Thus, cost1(Di) ≤ Θ(cost1({p′i})).
(Part 2): We prove cost2(D) = Θ(cost2(D′)). We reformulate

cost2(D′) as 3(
p′0
2

+
Σt′

i=1|R(P ′i−1)|+|R(P ′i )|
2

+
|R(P ′

t′ )|
2

). Thus,

cost2(D′) = Θ(Σt
′
i=1(|R(P ′i−1)|+ |R(P ′i )|)). (9)

Note that in D that is constructed based on D′, we will gradu-
ally combine pi1, p

i
2, . . . , p

i
ti

to P ′i−1 in order to get P ′i . Hence,

the term |R(P ′i−1)|+ |R(P ′i )| for each 1 ≤ i ≤ t′ in cost2(D′)
is replaced by

costi2(D) = |R(P ′i−1)|+ |R(P ′i−1 ∪ pi1)|+

· · ·+ |R(P ′i−1 ∪ pi1 ∪ · · · ∪ piti−1)|+ |R(P ′i )|.
(10)

Recall that there exists a ki such that, when 1 ≤ j ≤ ki, pij is

a strong TwinTwig, and when ki < j ≤ ti, pij is a non-strong
TwinTwig. Let x = ki and y = ti − ki, then there are x+ y+ 1
terms in costi2(D). We have,

– (S1): The sum of the first x + 1 terms in costi2(D) is
Θ(|R(P ′i−1)|). Since each pij is a strong TwinTwig, accord-
ing to Lemma 2 and Corollary 1, when j increases, the
size of the j-th term decreases exponentially with a rate

≤ (2M)2

N3 < 1, thus, statement S1 holds.
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– (S2): The sum of the last y terms in costi2(D) is Θ(|R(P ′i )|).
Since each pij is a non-strong TwinTwig, according to Eq. 8,
when j increases, the size of the j-th term increases expo-
nentially with a rate ≥ d > 1, thus, statement S2 holds.

Based on S1 and S2, we have cost2(D) = Θ(cost2(D′)), and
therefore, Theorem 1 holds. 2

Proof of Lemma 3 (Section 5.3). We first prove the space
complexity. Each entry (P ′,D′, cost(D′, P )) in H is uniquely
identified by the partial pattern P ′, and there are at most 2m

partial patterns, which consumes at most O(2m) space. Note
that each P ′ and D′ can be stored using constant space by
only keeping the last TwinTwig p that generates P ′ and D′,
and a link to the entry identified by P ′ − p.

Next we prove the time complexity. Let s be the possible
number of TwinTwigs in P , we have

s = Σv∈V (P )d(v)
2 ≤ Σv∈V (P )d(v)× d = 2m× d.

When an entry is popped out from H, it can be expanded at
most s times. Using a Fibonacci heap, pop works in log(|H|)
time, and update and push both work in O(1) time. Thus the
overall time complexity is

O(2m · (s+ log(|H|))) = O(d ·m · 2m). 2

A.2 Instance Optimality of TwinTwigJoin in the
power-law random graph (Section 6).

To show that the instance optimality of TwinTwigJoin in
power-law graphs, we prove that Theorem 1 holds in a power-
law random graph model. Following the same proof structure
as Theorem 1, we divide the proof into the following two
parts: In part 1, we prove that cost1(D) ≤ Θ(cost1(D′)), and
in part 2, we prove that cost2(D) = Θ(cost2(D′)). In order to
prove part 2, we still compare Eq. 9 and Eq. 10, and then
prove the two cases, namely, S1: the size of the results de-
creases after joining a strong TwinTwig; S2: the size of the
results increases after joining a non-strong TwinTwig. Below
is the detailed proof.

(Part 1): Let p be a two-edge TwinTwig3, we have

cost1(Di) = Θ(|R(p)| · t′i) and,

cost1({p′i}) = Θ(|R(p)| · E[d(u)t
′
i−2])

≥ Θ(|R(p)| · E[d(u)]t
′
i−2) = Θ(|R(p)| · dt

′
i−2).

where E[d(u)] is the expected degree for an arbitrary node u
in V (G). Given that d ≥ 2 and t′i ≥ 3, it is easy to see that
cost1(Di) ≤ cost1({p′i}) for each 0 ≤ i ≤ t′, which results in
cost1(D) ≤ Θ(cost1(D′)). Therefore, part 1 is proved.

(Part 2): For a certain pattern decomposition, we consider
generating R(Pi) using R(Pi−1) and R(pi). Suppose γ is the
expected number of matches in R(Pi) that are generated from
a certain match in R(Pi−1), we have

|R(Pi)| = γ|R(Pi−1)|. (11)

The value of γ depends on how pi is joined with Pi−1. Suppose
pi = {(v, v′), (v, v′′)}, in order to prove part 2, we need to
prove the following S1 and S2 accordingly. (S1): We prove
that γ < 1 when pi is a strong TwinTwig with v′ ∈ V (Pi−1)
and v′′ ∈ V (Pi−1). When v ∈ V (Pi−1), γ < 1 can be easily
proved since no new node is added into V (Pi). When v /∈

3 The case is much easier when p is an edge, we hence focus
on the two-edge TwinTwig in the following.

V (Pi−1), suppose u′ and u′′ are arbitrary matches of v′ and
v′′ respectively, we have

γ = E[Σu∈V (G)d(u
′)d(u)ρ× d(u′′)d(u)ρ]

= E[d(u′)d(u′′)]× ρ2ΣNi=1w
2
i .

In order to calculate γ, we simplify the calculation of
E[d(u′)d(u′′)] by only considering the relationship between u′

and u′′. There are two cases:
First, there is no edge between v′ and v′′ in Pi−1, and we

consider that their matches, u′ and u′′, are independent. In
this case, E[d(u′)d(u′′)] = E[d(u′)]E[d(u′′)] = d2. We have

γ = d2 × ρ2ΣNi=1w
2
i =

ΣNi=1w
2
i

N2
. (12)

According to A4, wi ≤ dmax ≤
√
N , therefore, γ <

d2max
N
≤ 1.

Second, there is an edge between v′ and v′′ in Pi−1. In
this case, u′ and u′′ must have an edge in the data graph.
Using the Bayes equation, we can derive the equation:

P (u′ = ui, u
′′ = uj |u′, u′′ form an edge)

=
P (u′, u′′ form an edge |u′ = ui, u

′′ = uj)× P (u′ = ui, u
′′ = uj)

P (u′, u′′ form an edge)

=
Pi,j × (1/N2)

2M/N2
= ρPi,j .

As a result, we have

E[d(u′)d(u′′)] = ΣNi,j=1ρPi,jwiwj

= ρ2(ΣNi=1w
2
i Σ

N
j=1w

2
j ) = ρ2(ΣNi=1w

2
i )2.

Therefore, γ can be calculated as

γ = ρ2(ΣNi=1w
2
i )2 × ρ2ΣNi=1w

2
i =

(ΣNi=1w
2
i )3

(ΣNi=1wi)
4
. (13)

It is hard to compute an upper bound for γ in this case.
However, we show that γ < 1 for most real-world graphs. In
order to do so, we vary β from 2.1 to 2.9, d from 5 to 500,
and N from 10, 000 to 100, 000, 000. Since γ increases with
dmax, we set dmax =

√
N . With β, d, N , and dmax, we can

generate wi(1 ≤ i ≤ N) via [38], and thus γ can be calculated
via Eq. 13. The results are shown in Fig. 15, in which we can
see that γ < 1 for all practical cases. (S2): We prove that
γ > 1 when pi is a non-strong TwinTwig with u ∈ V (Pi−1),
u′ /∈ V (Pi−1), and u′′ /∈ V (Pi−1). In this situation, we have

γ = E[Σu′,u′′∈V (G)d(u)d(u′)ρ× d(u)d(u′′)ρ]

= E[d(u)2]ρ2ΣNi,j=1wiwj = E[d(u)2] = ΣNi=1w
2
i /N.

(14)

Obviously, γ ≥ E[d(u)]2 = d2 > 1. Now according to S1 and
S2, part 2 is proved when pi is a two-edge TwinTwig.

According to Part 1 and Part 2, the instance optimality
of the TwinTwigJoin holds for a power-law random graph.

A.3 Proofs in Section 8

Proof of Proposition 1 (Section 8.1). (i) is apparently true,
and the proof of (iii) is similar to (ii), hence we concentrate
on (ii) here.

(If) Let S1 be the set of nodes aggregated on N [u] in
reduce1 (Algorithm 3) and S2 be the set of nodes aggregated
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Fig. 15 The values of γ in different parameter combinations

on N (u) in reduce2 (Algorithm 3). If S(u) is a clique com-
pressed node, we show that (1) S(u) = S1, and (2) S2 = {u}.

(1) On the one way, ∀u′ ∈ S(u), and u′ 6= u, we know
N [u′] = N [u], and u′ must be aggregated in reduce1 (Algo-
rithm 3) on the key N [u]. Thus, u′ ∈ S1, and as a result,
S1 ⊆ S(u). On the other way, ∀u′ ∈ S1 and u′ 6= u, we have
N [u] = N [u′], leading to N (u′)\{u} = N (u)\{u′}. According
to Definiton 13 and Definiton 14, we have u′ ∈ S(u). As a re-
sult, S(u) ⊆ S1. Conclusively, S(u) = S1 holds. Note that we
only output the record in line 10 (Algorithm 3) for us1 , the
minimum node in S1 (also the representative node of S(u)).
Therefore, we have out1(u) as shown in 2.

(2) It suffices to show that @u′ 6= u, such that N (u′) =
N (u). We prove this by contradiction. Suppose there is such
a u′. By N (u′) = N (u), we must have u′ 6∈ N (u). As S(u) is
a clique compressed node, ∃u′′ 6= u′ and u′′ 6= u, such that
N [u′′] = N [u]. We hence have u′′ ∈ N (u) ⇒ u′′ ∈ N (u′) ⇒
u′ ∈ N (u′′) ⇒ u′ ∈ N (u). This draws a contradiction. As a
result, there are not nodes but u itself gathered in reduce2

(Algorithm 3), and we have out2 as shown in 2.

(Only If) While u = rS(u) and having out1(u) =
(u; (�,S(u))), it is apparent that S(u) is a clique compressed
node. Otherwise, out1(u) = ∅. Clearly u does not belong to
a trivial compressed node, as otherwise 1 is expected. Addi-
tionally, S(u) cannot be an independent compressed node, as
out2(u) would never be associated with a “×” if this is the
case. Therefor, S(u) must be a clique compressed node. 2

Proof of Lemma 4 (Section 8.1). It is clear that each triv-
ial compressed node S = {u} will be output in reduce3 (Algo-
rithm 3) on the key u. Consider a non-trivial compressed node
S = {us1 , us2 , . . . , usk}. According to Proposition 1, reduce3

(Algorithm 3) will receive two values only on the key us1 ,
where the compressed node S is generated with us1 as the
representative node. Therefore, the lemma holds. 2

Proof of Lemma 5 (Section 8.1). Given any compressed
edge (S,S′) ∈ E(G∗), we show it is returned by Algorithm 4.
Let u = rS . On the one hand, map22 (Algorithm 4) outputs
(u; (∈,S)). On the other hand, we have u ∈ N o(S′) when
(S,S′) ∈ E(G∗). As a result, map21 (Algorithm 4) involves
(u; (→,S′)) in the output. Finally, the above two key-value
pairs arrive at reduce2 (Algorithm 4), and the corresponding
compressed edge is binded. 2

Proof of Lemma 6 (Section 8.1). In MapReduce, commu-
nication cost is triggered by transferring the output data of
each mapper to the reducer. In Algorithm 3, map1 and map2

output the neighbors for each node, and the cost is O(M),
and map3 outputs each node with its compressed node, and
the cost is O(N · |S|), where |S| is the average size of the com-
pressed nodes. In Algorithm 4, map11 outputs each node with
its neighbors and map12 outputs the representative node with

its compressed node. They contribute to O(M +N · |S|) cost.
As for map21 and map22, we can simply use rS(u) to represent
S(u), hence they render the same cost as the first stage. To
summarize, the overall communication cost of the construc-

tion of compressed graph is O(M+N ·|S|), or simply O(M+N)

considering that |S| is often small. 2

Proof of Corollary 2 (Section 8.2). Given a match of p
(u0, u1, u2), such that the corresponding compressed match
(S(u0),S(u1),S(u2)) satisfies S(u0) = S. As a valid match of
p, we must have (u0, u1) ∈ E(G) and (u0, u2) ∈ E(G). There
are four cases for the compressed match.

– S = S(u0) = S(u1) = S(u2). In this case, S at least
includes {u0, u1, u2}. Further, we have S.clique=true due
to (u0, u1) ∈ E(G). This compressed match is handled in
line 2 in Algorithm 5.

– S = S(u1) or S = S(u2). In this case, S has at least
two nodes and similarly S.clique =true. This compressed
match is processed in line 4.

– S 6= S(u1) = S(u2). Note that S(u1) ∈ N ∗(S), and this
case is covered in line 5.

– S 6= S(u1) 6= S(u2). Both compressed nodes are S’s neigh-
bors. Algorithm 5 covers this case in line 7 by enumer-
ating the pairs of compressed nodes in S’s compressed
neighbors.

Summarizing the above cases, Algorithm 5 returns all
R∗S(p). It is obvious that R∗(p) =

⋃
S∈V (G∗)R

∗
S(p). This com-

pletes the proof. 2

Proof of Lemma 7 (Section 8.2). Following the pattern de-
composition D(P ) = {p0, p1, . . . , pt}, the algorithm processes
t rounds. We prove this lemma by making inductions on the
MapReduce rounds.

Initially, it is round 0 where P0 is a TwinTwig. The lemma
holds as SubgEnumCompr correctly computes all compressed
matches of a TwinTwig according to Corollary 2.

Suppose SubgEnumCompr correctly computes all com-
pressed matches of Pn−1 in the (n − 1)th round, where 1 <
n ≤ t. In this nth round, we know that SubgEnumCompr will
process the join R∗(Pn) = R∗(Pn−1) 1 R∗(pn). Let the join
attributes be Vk = V (Pn−1)∩V (pn) and V (Pn) = (V (Pn−1)\
Vk, Vk, V (pn)\Vk). Given a match of Pn - f - we divide it into
three parts, namely fn−1 = f(V (Pn−1) \ Vk), fk = f(Vk) and
fn = f(V (pn) \ Vk)), where f(V ) = (f(v1), f(v2), . . .) for all
vj ∈ V . Define a bijective mapping σ : V (G) 7→ V (G∗) such
that σ(u) = S(u) for all u ∈ V (G). The compressed match
related to f , can hence be written as f ◦ σ = (fn−1 ◦ σ, fk ◦
σ, fn ◦ σ). It is obviously that (fn−1 ◦ σ, fk ◦ σ) ∈ R∗(Pn−1)
and (fk ◦ σ, fn ◦ σ) ∈ R∗(pn). According to the induction and
Corollary 2, the algorithm correctly computes all R∗(Pn−1)
and R∗(pn). Therefore, (fn−1 ◦ σ, fk ◦ σ) and (fk ◦ σ, fn ◦ σ)
must have been computed and will be joined in this round
on the key fk ◦ σ to generate the compressed match of f . In
other words, any compressed match in R∗(Pn) that is related
to a valid match will be correctly computed.

By induction, SubgEnumCompr correctly computes all
compressed matches of P after t rounds of MapReduce. 2
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