

Scalable Subgraph Enumeration in MapReduce

CSE, The University of New South Wales, Australia
QCIS, University of Technology, Sydney

L: Een Goed begin is het halve werk

- Problem Statement
- Methodology
- Evaluation

Given a pattern graph *P*, we aim at finding all matches of P in a large data graph *G* using MapReduce

Both P and G are **unlabeled**, **simple** graphs

G is arranged as (*u*; *N*(*u*)) for each data nodes, and stored in the HDFS

Given a pattern graph *P*, we aim at finding all matches of *P* in a large data graph *G* using MapReduce

G

Ρ

Given a pattern graph *P*, we aim at finding all matches of *P* in a large data graph *G* using MapReduce

G

Ρ

We can find three matches

 (u_1, u_2, u_3, u_4) , the peripheral square

Subgraph Enumeration

Given a pattern graph *P*, we aim at finding all matches of *P* in a large data graph *G* using MapReduce

We can find three matches

(u_1 , u_2 , u_3 , u_4), the peripheral square

 (u_1, u_3, u_2, u_4) , the shadowed part

Subgraph Enumeration

Given a pattern graph *P*, we aim at finding all matches of *P* in a large data graph *G* using MapReduce

We can find three matches

 (u_1, u_2, u_3, u_4) , the peripheral square

 (u_1, u_3, u_2, u_4) , the shadowed part

 (u_1, u_2, u_4, u_3) , the white part

Why Subgraph Enumeration

Social Networks

Community Detection

Nodes in the same communities tend to form specific subgraphs (clique, e.g.)

Network Similarity Study

The frequencies of specific pattern graphs can be good features to study network similarity

Cluster Coefficient Calculation

Triangles / (# neighbors X (#neighbors - 1))

Why Subgraph Enumeration

BioInformatics

Motif Discovery

Motifs are some very frequent patterns

Complex Network Design

Specific pattern graphs can facilitate complex network design

Abnormity Detection

Abnormity represents as unexpected statistical information of specific pattern graphs

Most Related Work

Edge Join [T. Plantenga, JPDC 2012]

- Join edges one by one to get the final results
- Finish in m rounds, not scalable to handle complicated pattern graph
- Z Too many intermediate results

Multiway join [F.Afrati, D.Fotakis, J.D.Ullman, ICDE 2013]

- One-round computation by duplicating edges
- Do not scale well due to memory issues

L: Een Goed begin is het halve werk

- Problem Statement
- Methodology
- Evaluation

Graph Decomposition

Pattern Graph is decomposed into a sequence of **stars**

Graph Decomposition

Pattern Graph is decomposed into a sequence of **stars**

Why Star?

When we have (u, N(u)) as input, we can search the matches of star rooted on u by enumerating the node combinations in N(u).

After decomposition, we will process (t-1)-round leftdeep join operations using MapReduce

After decomposition, we will process (t-1)-round leftdeep join operations using MapReduce

After decomposition, we will process (t-1)-round leftdeep join operations using MapReduce

TwinTwig

Matching a star can still produce large number of intermediate results

Matching a star can still produce large number of intermediate results

Common for a node to contain many neighbors in a large social networks or web graphs

<u>A node with 100,000 neighbors $=> 10^{15}$ matches of a 3-star</u>

Matching a star can still produce large number of intermediate results

Common for a node to contain many neighbors in a large social networks or web graphs

A star of **at most** two edges

TwinTwig Decomposition

TwinTwig Decomposition

<u>Star Join:</u> The join process w.r.t. star decomposition <u>TwinTwig Join:</u> The join process w.r.t. TwinTwig decomposition

E

In order to estimate the cost, we need to compute the number of matches of any pattern graphs in the data graph <u>before running the algorithms</u>

G: Random Data graphM: Number of edges in Gm: Number of edges in P

P: Pattern graph

N: Number of nodes in G

n: Number of nodes in *P*

Instance Optimality

Given a *star join*, *star*, there always exists a *TwinTwig join*, *tt*, s.t.

 $\Theta(cost(tt)) \le \Theta(cost(star))$

Instance Optimality

We also show that the instance optimality holds in a power-law random graph model

L: Een Goed begin is het halve werk

- Problem Statement
- Methodology
- **Evaluation**

Progress: 75%

Experimental Settings

Algorithms	Desc.	Dataset G	V(G)	E(G)
Edge	Edge Join	sk	1.6M	11.1M
Mul	Multiway Join Star Join TwinTwig join	yt	3.2M	12.2M
Star TT		lj	4.8M	42.9M
		orkut	3.1M	261.8M
		uk	18.5M	261.8M
		fs	65.6M	1806.1M

Algorithms

Datasets

Experimental Settings

Queries

Vary Datasets

Vary Queries

Vary Queries

L: Een Goed begin is het halve werk

- Problem Statement
- Methodology
- Evaluation

Conclusions

A scalable MapReduce solution for subgraph enumeration

A left-deep-join framework to process star join

Leveraging the (power-law) random graph model, we show the instance optimality of TwinTwig join

Extensive performance studies to confirm the effectiveness of our approach

Thank you & Questions