

SCALABLE DISTRIBUTED SUBGRAPH ENUMERATION

AUTHORS:

LONGBIN LAI
LU QIN
XUEMIN LIN
YING ZHANG
LIJUN CHANG

OUTLINE

PROBLEM DEFINITION ALGORITHM FRAMEWORK TWINTWIG JOIN - VLDB15' SEED **EXPERIMENTS** CONCLUSION

PROBLEM

PROBLEM DEFINTION

SUBGRAPH ENUMERATION

• Given a data graph G, and a pattern graph P, subgraph enumeration aims to find all subgraphs $g \subseteq G$ (matches), that are isomorphic to P.

PROBLEM DEFINTION

SUBGRAPH ENUMERATION

• Given a data graph G, and a pattern graph P, subgraph enumeration aims to find all subgraphs $g\subseteq G$ (matches), that are isomorphic to P.

PROBLEM DEFINTION

SUBGRAPH ENUMERATION

• Given a data graph G, and a pattern graph P, subgraph enumeration aims to find all subgraphs $g \subseteq G$ (matches), that are isomorphic to P.

FRAMEWORK

PATTERN DECOMPOSITION

WHAT CAN BE JOIN UNITS

- Graph Storage $\Phi(G) = \{G_u | u \in V(G)\}$
 - Stored as $(u;G_u)$ for each data node
 - G_u : Local Graph of u s.t.
 - (1) Connected
 - (2) $u \in V(G_u)$
 - (3) $\bigcup_{u \in V(G)} E(G_u) = E(G)$

WHAT CAN BE JOIN UNITS

• A structure p can be a join unit iff.

$$R_G(p) = \bigcup_{u \in V(G)} R_{G_u}(p)$$

 $oldsymbol{R}_{\mathcal{G}}(p)$ stands for the matches of p in \mathcal{G}

JOIN PLAN (TREE)

- Decomposing $P=p_0\cup p_1\cup p_2\cup p_3$
- Solving: $R(P)=R(p_0)\bowtie R(p_1)\bowtie R(p_2)\bowtie R(p_3)$

JOIN PLAN (TREE)

- Decomposing $P=p_0\cup p_1\cup p_2\cup p_3$
- Solving: $R(P)=R(p_0)\bowtie R(p_1)\bowtie R(p_2)\bowtie R(p_3)$

JOIN PLAN (TREE)

- Decomposing $P=p_0\cup p_1\cup p_2\cup p_3$
- Solving: $R(P)=R(p_0)\bowtie R(p_1)\bowtie R(p_2)\bowtie R(p_3)$

Left-deep tree

Bushy tree

DESCRIBE THE ALGORITHMS

- Graph Strorage mechanism
 - Determine the join units, thereafter the pattern decomposition
- Join Structure
 - Left-deep tree vs bushy tree

TWINTWIG JOIN-VLDB15'

TWINTWIG JOIN - VLDB2015

SIMPLE GRAPH STORAGE

ullet The simple graph storage, each local graph G_u

$$V(G_u) = \{u\} \cup \mathcal{N}(u)$$
$$E(G_u) = \{(u, u') | u' \in \mathcal{N}(u)\}$$

TWINTWIG JOIN - VLDB2015

SIMPLE GRAPH STORAGE

The simple graph storage, where

$$V(G_u) = \{u\} \cup \mathcal{N}(u)$$
$$E(G_u) = \{(u, u') | u' \in \mathcal{N}(u)\}$$

Star as the join unit

TWINTWIG JOIN - VLDB2015

SIMPLE GRAPH STORAGE

The simple graph storage, where

$$V(G_u) = \{u\} \cup \mathcal{N}(u)$$
$$E(G_u) = \{(u, u') | u' \in \mathcal{N}(u)\}$$

Star as the join unit

A node with degree 1,000,000 will generate 10^{18} 3-stars

TWINTWIG JOIN SIMPLE GRAPH STORAGE

• Using twintwigs as the join units

- Instance Optimality
 - Given any join plan involving general stars, we can solve it using twintwigs with at most the same (often much less) cost

TWINTWIG JOIN

LEFT-DEEP JOIN PLAN

• An optimal <u>left-deep</u> join plan with minimum estimated cost

TWINTWIG JOIN

DRAWBACKS

- Simple storage mechanism only support using <u>star</u> as join units, too many intermediate results
 - Twintwig: confine to be at most two edges
 - The node with degree 1,000,000 still have $10^{12}\,\mathrm{two-edge}$ twintwigs
 - Too many execution rounds.
 - A clique of 6 nodes (15 edges): Seven rounds of TwinTwigJoin

TWINTWIG JOIN

DRAWBACKS

• Left-deep join: may result in sub-optimal results

Optimal solution is a bushy join

 $R(p_0)$

SEED - VLDB17' MOTIVATIONS

- <u>Subgraph Enum Eration in Distributed Context</u>
 - SCP (Star-Clique-Preserved) graph storage: Use star and <u>clique</u> as the join units
 - We can avoid using star if clique is an alternative
 - Shorter execution. The 6-clique can now be processed in one single round, instead of 7 rounds in TwinTwigJoin
 - Bushy join plan: Optimality Guarantee
 - Much better performance

SCP GRAPH STORAGE

ullet The SCP Graph Storage, where each local graph $\,G_u^+$

$$V(G_u^+) = V(G_u) = \{u\} \cup \mathcal{N}(u)$$

$$E(G_u^+) = E(G_u) \cup \{(u', u'') | (u', u'') \in E(G) \land u', u'' \in \mathcal{N}(u)\}$$

SCP GRAPH STORAGE

- The SCP Graph Storage, where each local graph ${\cal G}_u^+$

$$V(G_u^+) = V(G_u) = \{u\} \cup \mathcal{N}(u)$$

$$E(G_u^+) = E(G_u) \cup \{(u', u'') | (u', u'') \in E(G) \land u', u'' \in \mathcal{N}(u)\}$$

NEIGHBOUR EDGES

SCP GRAPH STORAGE

- The SCP Graph Storage, where each local graph ${\cal G}_u^+$

$$V(G_u^+) = V(G_u) = \{u\} \cup \mathcal{N}(u)$$

$$E(G_u^+) = E(G_u) \cup \{(u', u'') | (u', u'') \in E(G) \land u', u'' \in \mathcal{N}(u)\}$$

TRIANGLE EDGES

SCP GRAPH STORAGE

- The SCP Graph Storage, where each local graph ${\cal G}_u^+$

$$V(G_u^+) = V(G_u) = \{u\} \cup \mathcal{N}(u)$$

$$E(G_u^+) = E(G_u) \cup \{(u', u'') | (u', u'') \in E(G) \land u', u'' \in \mathcal{N}(u)\}$$

NEIGHBOUR EDGES

TRIANGLE EDGES

SCP GRAPH STORAGE

- We show that SCP graph storage supports using both star and clique as the join units
- A more compact version which has <u>bounded</u> size for each local graph

OPTIMAL BUSHY JOIN PLAN

- Notations
 - E_P : The join plan to solve P
 - ullet $C(E_P)$: The cost of the join plan
 - ullet C(P): Estimated # matches of P in G
- ullet We aim at finding a join plan for P , s.t.

$$C(E_P)$$
 is minimised

OPTIMAL BUSHY JOIN PLAN

A dynamic programming transform function

$$ullet$$
 e.g. $E_{P'}$

- (1) $E_{P_{i}^{\prime}}$
- (2) $E_{P_r'}$

• (3)
$$R(P') = R(P'_l) \bowtie R(P'_r)$$

OPTIMAL BUSHY JOIN PLAN

- A dynamic programming transform function
 - ullet e.g. $E_{P'}$
 - (1) $E_{P_l'}$
 - (2) $E_{P_r'}$

• (3)
$$R(P') = R(P'_l) \bowtie R(P'_r)$$

$$C(E_{P'}) = \min_{P'_l \subset P' \land P'_r = P' \setminus P'_l} \{ C(E_{P'_l}) + C(P'_l) + C(E_{P'_r}) + C(P'_r) \}$$

EXPERIMENTS SETUP

Queries

Algorithms

- SEED+O (The most optimised SEED)
- TT (The most optimised TwinTwigJoin, VLDB 2015)
- pSgL (Shao et al. Sigmod 2014)

EXPERIMENTS SETUP

- Cluster
 - Amazon EC2: 1 master node, 10 slave nodes

Node	Instance	vCPU	Memory	Disk
master	m3.xlarge	4	15GB	2 x 40GBSSD
slave	c3.4xlarge	16	30GB	2 x 160GB SSD

- Hadoop 2.6.2
 - JVM heap space: mapper 1524MB, reducer 2848MB
 - 6 mappers and 6 reducers each machine

RESULTS

RESULTS

RESULTS

EXPERIMENTS RESULTS

CONCLUSION

- A general decompose-and-join framework to solve subgraph enumeration
- TwinTwigJoin = Simple graph storage (twintwigs as the join units) + Optimal left-deep join
- SEED = SCP graph storage (star and clique as the join units) + Optimal bushy join

Q & A THANK YOU!