A Survey of Distributed Graph Algorithms on Massive Graphs

Abstract

Distributed processing of large-scale graph data has many practical applications and has been widely studied. In recent years, a lot of distributed graph processing frameworks and algorithms have been proposed. While many efforts have been devoted to analyzing these, with most analyzing them based on programming models, less research focuses on understanding their challenges in distributed environments. Applying graph tasks to distributed environments is not easy, often facing numerous challenges through our analysis, including parallelism, load balancing, communication overhead, and bandwidth. In this article, we provide an extensive overview of the current state-of-the-art in this field by outlining the challenges and solutions of distributed graph algorithms. We first conduct a systematic analysis of the inherent challenges in distributed graph processing, followed by presenting an overview of existing general solutions. Subsequently, we survey the challenges highlighted in recent distributed graph processing papers and the strategies adopted to address them. Finally, we discuss the current research trends and identify potential future opportunities.

Publication
ACM Computing Surveys, Volume 57, Issue 2